Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 507, Pages 57–60
DOI: https://doi.org/10.31857/S2686954322700047
(Mi danma319)
 

MATHEMATICS

Bruhat numbers of a strong Morse function

P. E. Pushkar'ab, M. Tyomkinac

a National Research University Higher School of Economics, Moscow, Russia
b Independent University of Moscow, Moscow, Russia
c Dartmouth College, Hanover, USA
References:
Abstract: Let $f$ be a Morse function on a manifold M such that all its critical values are pairwise distinct. Given such a function (together with a certain choice of orientations) and a field $\mathbb F$, we construct a set of nonzero elements of the field, which are called Bruhat numbers. Under certain acyclicity conditions on $M$, the alternating product of all the Bruhat numbers does not depend on $f$ (up to sign); thus, it is an invariant of the manifold. For any typical one-parameter family of functions on $M$, we provide a relation that links the Bruhat numbers of the boundary functions of the family with the number of bifurcations happening along a path in the family. This relation generalizes the result from [1].
Keywords: Morse theory, Cerf theory, topology of manifolds.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation
Russian Foundation for Basic Research 18-01-00461
Simons Foundation
Temkin’s study was performed within the basic research program of the National Research University Higher School of Economics with state support for leading universities of the Russian Federation, project no. 5-100. Pushkar’s research was supported by the Russian Science Foundation (project no. 18-01-00461) and by the Simons Foundation.
Presented: V. A. Vassiliev
Received: 15.05.2020
Revised: 27.10.2020
Accepted: 27.10.2020
English version:
Doklady Mathematics, 2022, Volume 106, Issue 3, Pages 454–457
DOI: https://doi.org/10.1134/S1064562422700120
Bibliographic databases:
Document Type: Article
UDC: 515.16
Language: Russian
Citation: P. E. Pushkar', M. Tyomkin, “Bruhat numbers of a strong Morse function”, Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022), 57–60; Dokl. Math., 106:3 (2022), 454–457
Citation in format AMSBIB
\Bibitem{PusTyo22}
\by P.~E.~Pushkar', M.~Tyomkin
\paper Bruhat numbers of a strong Morse function
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 507
\pages 57--60
\mathnet{http://mi.mathnet.ru/danma319}
\crossref{https://doi.org/10.31857/S2686954322700047}
\elib{https://elibrary.ru/item.asp?id=49991285}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 3
\pages 454--457
\crossref{https://doi.org/10.1134/S1064562422700120}
Linking options:
  • https://www.mathnet.ru/eng/danma319
  • https://www.mathnet.ru/eng/danma/v507/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:97
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024