Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 507, Pages 26–28
DOI: https://doi.org/10.31857/S2686954322600380
(Mi danma313)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On Kantorovich problems with a parameter

V. I. Bogachevabc, S. N. Popovabd

a Lomonosov Moscow State University, Moscow, Russia
b National Research University Higher School of Economics, Moscow, Russia
c Saint-Tikhon’s Orthodox University, Moscow, Russia
d Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow, Russia
Citations (2)
References:
Abstract: In this note, we study the Kantorovich problem of optimal transportation of measures on metric spaces in the case where the cost function and marginal distributions depend on a parameter from a metric space. It is shown that the Hausdorff distance between the sets of probability measures with given marginals can be estimated by the distances between the marginals. As a corollary, it is proved that the cost of optimal transportation is continuous with respect to the parameter if the cost function and marginal distributions are continuous in this parameter.
Keywords: Kantorovich problem, Kantorovich metric, optimal plan, Hausdorff distance, continuity with respect to a parameter.
Funding agency Grant number
Russian Science Foundation 22-11-00015
This research is supported by the Russian Science Foundation, grant no. 22-11-00015.
Presented: V. V. Kozlov
Received: 01.06.2022
Revised: 30.10.2022
Accepted: 17.11.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 3, Pages 426–428
DOI: https://doi.org/10.1134/S1064562422700107
Bibliographic databases:
Document Type: Article
UDC: 517.987
Language: Russian
Citation: V. I. Bogachev, S. N. Popova, “On Kantorovich problems with a parameter”, Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022), 26–28; Dokl. Math., 106:3 (2022), 426–428
Citation in format AMSBIB
\Bibitem{BogPop22}
\by V.~I.~Bogachev, S.~N.~Popova
\paper On Kantorovich problems with a parameter
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 507
\pages 26--28
\mathnet{http://mi.mathnet.ru/danma313}
\crossref{https://doi.org/10.31857/S2686954322600380}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563841}
\elib{https://elibrary.ru/item.asp?id=49991279}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 3
\pages 426--428
\crossref{https://doi.org/10.1134/S1064562422700107}
Linking options:
  • https://www.mathnet.ru/eng/danma313
  • https://www.mathnet.ru/eng/danma/v507/p26
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025