Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 507, Pages 22–25
DOI: https://doi.org/10.31857/S2686954322700035
(Mi danma312)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On fixed points of continuous mappings associated with construction of artificial neural networks

V. B. Betelina, V. A. Galkinb

a Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow, Russia
b Surgut Branch of Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Surgut, Russia
Citations (2)
References:
Abstract: A general topological approach is proposed for the construction of converging artificial neural networks (ANN) by applying decision-making algorithms tuned on a sequence of iterations of continuous mappings (ANN layers). The mappings are selected using optimization principles underlying ANN training, and decision-making based on the results of training a multilayer ANN corresponds to finding a sequence converging to a fixed point. It is found that problems of this class are computationally unstable, which is caused by the phenomenon of dynamic chaos associated with the ill-posedness of the problems. Stabilization methods converging to stable fixed points of the mappings are proposed, which is the starting point for a wide variety of mathematical studies concerning the optimization of training sets in ANN construction.
Keywords: artificial neural networks, optimization methods, computational instability, dynamic chaos, regularization methods, fixed points.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 0065-2019-0007
This work was performed within the state assignment of the Scientific Research Institute for System Analysis of the Russian Academy of Sciences (fundamental research GP-47), subject no. 0065-2019-0007.
Received: 18.07.2022
Revised: 25.07.2022
Accepted: 22.09.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 3, Pages 423–425
DOI: https://doi.org/10.1134/S1064562422700089
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: V. B. Betelin, V. A. Galkin, “On fixed points of continuous mappings associated with construction of artificial neural networks”, Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022), 22–25; Dokl. Math., 106:3 (2022), 423–425
Citation in format AMSBIB
\Bibitem{BetGal22}
\by V.~B.~Betelin, V.~A.~Galkin
\paper On fixed points of continuous mappings associated with construction of artificial neural networks
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 507
\pages 22--25
\mathnet{http://mi.mathnet.ru/danma312}
\crossref{https://doi.org/10.31857/S2686954322700035}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563840}
\elib{https://elibrary.ru/item.asp?id=49991278}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 3
\pages 423--425
\crossref{https://doi.org/10.1134/S1064562422700089}
Linking options:
  • https://www.mathnet.ru/eng/danma312
  • https://www.mathnet.ru/eng/danma/v507/p22
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:112
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024