|
This article is cited in 2 scientific papers (total in 2 papers)
MATHEMATICS
Arithmetic properties of the values of generalized hypergeometric series with polyadic transcendental parameters
V. G. Chirskii Lomonosov Moscow State University
Abstract:
Theorems on the infinite linear independence of the values of generalized hypergeometric series $\sum_{n=0}^\infty(a_1)_n\cdots(a_{m-1})_nz^n$ with parameters including transcendental polyadic Liouville numbers are proved.
Keywords:
infinite linear independence, polyadic Liouville numbers, Hermite–Padé approximations.
Citation:
V. G. Chirskii, “Arithmetic properties of the values of generalized hypergeometric series with polyadic transcendental parameters”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 95–107; Dokl. Math., 106:2 (2022), 386–397
Linking options:
https://www.mathnet.ru/eng/danma305 https://www.mathnet.ru/eng/danma/v506/p95
|
Statistics & downloads: |
Abstract page: | 82 | References: | 16 |
|