Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 506, Pages 68–72
DOI: https://doi.org/10.31857/S2686954322050162
(Mi danma301)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Boundedness and compactness of the two-dimensional rectangular Hardy operator

V. D. Stepanova, E. P. Ushakovab

a Computing Center, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, Russia
b V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia
Citations (1)
References:
Abstract: Criteria in terms of weight functions $v$ and $w$ on $\mathbb{R}^2_+$ are obtained for the two-dimensional rectangular integration operator to be bounded and compact from a weighted Lebesgue space $L^p_v(\mathbb{R}^2_+)$ to $L^q_w(\mathbb{R}^2_+)$ when 1 $<p$, $q<\infty$. For $p<q$, the boundedness criterion significantly strengthens the classical result of E. Sawyer (see the Introduction) for $p\le q$. The case $q<p$ is also discussed.
Keywords: weighted Lebesgue space, Hardy inequality, two-dimensional rectangular integration operator, boundedness, compactness.
Funding agency Grant number
Russian Science Foundation 22-21-00579
This study was carried out at the Computing Center of the Far Eastern Branch of the Russian Academy of Sciences and was supported by the Russian Science Foundation, project no. 22-21-00579 https://rscf.ru/project/22-21-00579/).
Received: 13.05.2022
Revised: 12.08.2022
Accepted: 15.08.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 2, Pages 361–365
DOI: https://doi.org/10.1134/S1064562422050180
Bibliographic databases:
Document Type: Article
UDC: 517.51+517.98
Language: Russian
Citation: V. D. Stepanov, E. P. Ushakova, “Boundedness and compactness of the two-dimensional rectangular Hardy operator”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 68–72; Dokl. Math., 106:2 (2022), 361–365
Citation in format AMSBIB
\Bibitem{SteUsh22}
\by V.~D.~Stepanov, E.~P.~Ushakova
\paper Boundedness and compactness of the two-dimensional rectangular Hardy operator
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 506
\pages 68--72
\mathnet{http://mi.mathnet.ru/danma301}
\crossref{https://doi.org/10.31857/S2686954322050162}
\elib{https://elibrary.ru/item.asp?id=49787605}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 2
\pages 361--365
\crossref{https://doi.org/10.1134/S1064562422050180}
Linking options:
  • https://www.mathnet.ru/eng/danma301
  • https://www.mathnet.ru/eng/danma/v506/p68
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:91
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024