|
MATHEMATICS
On the stochasticity parameter of quadratic residues
M. R. Gabdullin Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Abstract:
Following V.I. Arnold, we define the stochasticity parameter $S(U)$ of a set $U\subseteq\mathbb{Z}_M$ to be the sum of squares of consecutive distances between the elements of $U$. The stochasticity parameter of the set $R_M$ of quadratic residues modulo $M$ is studied. We compare $S(R_M)$ with the average value $s(k)=s(k,M)$ of $S(U)$ over all subsets of $U\subseteq\mathbb{Z}_M$ of size $k$. It is proved that (a) for a set of moduli of positive lower density, we have $S(R_M)<s(|R_M|)$; and (b) for infinitely many moduli, $S(R_M)>s(|R_M|)$.
Keywords:
quadratic residues, stochasticity parameter.
Citation:
M. R. Gabdullin, “On the stochasticity parameter of quadratic residues”, Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020), 19–22; Dokl. Math., 101:2 (2020), 93–95
Linking options:
https://www.mathnet.ru/eng/danma3 https://www.mathnet.ru/eng/danma/v491/p19
|
Statistics & downloads: |
Abstract page: | 145 | Full-text PDF : | 39 | References: | 13 |
|