Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 506, Pages 57–61
DOI: https://doi.org/10.31857/S2686954322050149
(Mi danma299)
 

MATHEMATICS

On condensations onto $\sigma$-compact spaces

A. E. Lipinab, A. V. Osipovab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
b Ural Federal University, Yekaterinburg, Russia
References:
Abstract: In this paper, we prove the following result. Let $X$ be a complete metric space of weight $w(X)$ and $H\subseteq X$ be a set such that $w(X)<|H|<c$. Then there is no continuous bijection of the subspace$X\setminus H$ onto a $\sigma$-compact space. As a result, there is no continuous bijection of the subspace $X\setminus H$ onto a Polish space. Thus, it has been proved that metric compact spaces are not $a_\tau$-spaces for any uncountable cardinal number $\tau$. This result answers the question asked by E.G. Pytkeev in his coauthored work “On the properties of subclasses of weakly dyadic compact sets” to be published in the Siberian Mathematical Journal.
Keywords: condensation, Polish space, compact space, $\sigma$-compact space, $a_\tau$-space.
Presented: S. V. Matveev
Received: 15.04.2022
Revised: 16.05.2022
Accepted: 10.08.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 2, Pages 351–355
DOI: https://doi.org/10.1134/S1064562422050167
Bibliographic databases:
Document Type: Article
UDC: 515.122.5
Language: Russian
Citation: A. E. Lipin, A. V. Osipov, “On condensations onto $\sigma$-compact spaces”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 57–61; Dokl. Math., 106:2 (2022), 351–355
Citation in format AMSBIB
\Bibitem{LipOsi22}
\by A.~E.~Lipin, A.~V.~Osipov
\paper On condensations onto $\sigma$-compact spaces
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 506
\pages 57--61
\mathnet{http://mi.mathnet.ru/danma299}
\crossref{https://doi.org/10.31857/S2686954322050149}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4531985}
\elib{https://elibrary.ru/item.asp?id=49787603}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 2
\pages 351--355
\crossref{https://doi.org/10.1134/S1064562422050167}
Linking options:
  • https://www.mathnet.ru/eng/danma299
  • https://www.mathnet.ru/eng/danma/v506/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:92
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024