|
MATHEMATICS
Odd-distance sets and right-equidistant sequences in the maximum and Manhattan metrics
A. I. Golovanova, A. B. Kupavskiiab, A. A. Sagdeeva a Moscow Institute of Physics and Technology, Moscow, Russia
b G-SCOP, Université Grenoble Alpes, CNRS, Франция
Abstract:
We solve two related extremal-geometric questions in the $n$-dimensional space $\mathbb{R}^n_\infty$ equipped with the maximum metric. First, we prove that the maximum size of a right-equidistant sequence of points in $\mathbb{R}^n_\infty$ equals 2$^{n+1}$–1. A sequence is right-equidistant if each of the points is at the same distance from all the succeeding points. Second, we prove that the maximum number of points in $\mathbb{R}^n_\infty$ with pairwise odd distances equals 2$^n$. We also obtain partial results for both questions in the $n$-dimensional space $\mathbb{R}^n_1$ with the Manhattan distance.
Keywords:
maximum metric, Manhattan metric, equilateral dimension, odd-distance sets, right-equidistant sequences.
Citation:
A. I. Golovanov, A. B. Kupavskii, A. A. Sagdeev, “Odd-distance sets and right-equidistant sequences in the maximum and Manhattan metrics”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 45–48; Dokl. Math., 106:2 (2022), 340–342
Linking options:
https://www.mathnet.ru/eng/danma296 https://www.mathnet.ru/eng/danma/v506/p45
|
Statistics & downloads: |
Abstract page: | 64 | References: | 25 |
|