Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 506, Pages 45–48
DOI: https://doi.org/10.31857/S2686954322050101
(Mi danma296)
 

MATHEMATICS

Odd-distance sets and right-equidistant sequences in the maximum and Manhattan metrics

A. I. Golovanova, A. B. Kupavskiiab, A. A. Sagdeeva

a Moscow Institute of Physics and Technology, Moscow, Russia
b G-SCOP, Université Grenoble Alpes, CNRS, Франция
References:
Abstract: We solve two related extremal-geometric questions in the $n$-dimensional space $\mathbb{R}^n_\infty$ equipped with the maximum metric. First, we prove that the maximum size of a right-equidistant sequence of points in $\mathbb{R}^n_\infty$ equals 2$^{n+1}$–1. A sequence is right-equidistant if each of the points is at the same distance from all the succeeding points. Second, we prove that the maximum number of points in $\mathbb{R}^n_\infty$ with pairwise odd distances equals 2$^n$. We also obtain partial results for both questions in the $n$-dimensional space $\mathbb{R}^n_1$ with the Manhattan distance.
Keywords: maximum metric, Manhattan metric, equilateral dimension, odd-distance sets, right-equidistant sequences.
Funding agency Grant number
Russian Science Foundation 22-21-00368
This work was supported by the Russian Science Foundation, grant no. 22-21-00368.
Presented: V. V. Kozlov
Received: 17.05.2022
Revised: 25.06.2022
Accepted: 27.07.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 2, Pages 340–342
DOI: https://doi.org/10.1134/S106456242205012X
Bibliographic databases:
Document Type: Article
UDC: 514.177.2
Language: Russian
Citation: A. I. Golovanov, A. B. Kupavskii, A. A. Sagdeev, “Odd-distance sets and right-equidistant sequences in the maximum and Manhattan metrics”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 45–48; Dokl. Math., 106:2 (2022), 340–342
Citation in format AMSBIB
\Bibitem{GolKupSag22}
\by A.~I.~Golovanov, A.~B.~Kupavskii, A.~A.~Sagdeev
\paper Odd-distance sets and right-equidistant sequences in the maximum and Manhattan metrics
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 506
\pages 45--48
\mathnet{http://mi.mathnet.ru/danma296}
\crossref{https://doi.org/10.31857/S2686954322050101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4531982}
\elib{https://elibrary.ru/item.asp?id=49787600}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 2
\pages 340--342
\crossref{https://doi.org/10.1134/S106456242205012X}
Linking options:
  • https://www.mathnet.ru/eng/danma296
  • https://www.mathnet.ru/eng/danma/v506/p45
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:64
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024