Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 506, Pages 41–44
DOI: https://doi.org/10.31857/S2686954322050095
(Mi danma295)
 

MATHEMATICS

On the equivalence of singular and ill-posed problems: The $p$-factor regularization method

Yu. G. Evtushenkoab, E. Bednarczukc, A. Prusińskad, A. A. Tret'yakovadc

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
c System Res. Inst., Polish Acad. Sciences, Warsaw, Poland
d Siedlce University, Faculty of Sciences, Siedlce, Poland
References:
Abstract: The local equivalence of singular and ill-posed problems in a class of sufficiently smooth mappings is shown, which justifies the use of the $p$-factor regularization method to solve them. The main constructions in $p$-regularity theory that are necessary for stable solution of approximate problems are described, and estimation theorems for regularizing algorithms are proved.
Keywords: singular, ill-posed, $p$-regular, factor method.
Funding agency Grant number
Russian Science Foundation 21-71-30005
Ministry of Science and Higher Education, Poland 165/0015
This work was supported by the Russian Science Foundation (project no. 21-71-30005) and by the scientific theme no. 165/0015 of the Ministry of Education and Science of Poland.
Received: 25.05.2022
Revised: 18.08.2022
Accepted: 20.08.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 2, Pages 336–339
DOI: https://doi.org/10.1134/S1064562422050118
Bibliographic databases:
Document Type: Article
UDC: 519.615
Language: Russian
Citation: Yu. G. Evtushenko, E. Bednarczuk, A. Prusińska, A. A. Tret'yakov, “On the equivalence of singular and ill-posed problems: The $p$-factor regularization method”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 41–44; Dokl. Math., 106:2 (2022), 336–339
Citation in format AMSBIB
\Bibitem{EvtBedPru22}
\by Yu.~G.~Evtushenko, E.~Bednarczuk, A.~Prusi{\'n}ska, A.~A.~Tret'yakov
\paper On the equivalence of singular and ill-posed problems: The $p$-factor regularization method
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 506
\pages 41--44
\mathnet{http://mi.mathnet.ru/danma295}
\crossref{https://doi.org/10.31857/S2686954322050095}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4531981}
\elib{https://elibrary.ru/item.asp?id=49787599}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 2
\pages 336--339
\crossref{https://doi.org/10.1134/S1064562422050118}
Linking options:
  • https://www.mathnet.ru/eng/danma295
  • https://www.mathnet.ru/eng/danma/v506/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:110
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024