Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 506, Pages 30–36
DOI: https://doi.org/10.31857/S268695432205006X
(Mi danma293)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On stabilization of an explicit difference scheme for a nonlinear parabolic equation

B. N. Chetverushkin, O. G. Olkhovskaya, V. A. Gasilov

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
Citations (1)
References:
Abstract: We developed a technique for the numerical solution of a nonlinear equation describing the diffusion transfer of radiation energy. The method is based on the introduction of the second time derivative with a small parameter into the parabolic equation and an explicit difference scheme. The explicit approximation of the original equation makes it possible to implement an algorithm that is effectively adapted to the architecture of high-performance computing systems. The new scheme provides a second-order resolution of the nonlinearity in time with an acceptable time step. A heuristic algorithm for choosing the parameters of a three-level difference scheme is proposed. Perspective applications of the method are problems in astrophysics, for example, the simulation of a strongly radiating shock wave breakout at the surface of a star at the stage of its evolution known as a supernova explosion.
Keywords: radiative heat exchange, radiation diffusion model, nonlinear parabolic equation, explicit difference scheme, high-performance computing.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2022-283
Russian Science Foundation 21-11-00362
This work was supported by the Moscow Center for Fundamental and Applied Mathematics, agreement no. 075-15-2022-283 with the Ministry of Science and Higher Education of the Russian Federation.
V.A. Gasilov’s research concerning the development of astrophysical applications was supported by the Russian Science Foundation, project no. 21-11-00362, https://rscf.ru/project/21-11-00362/.
Received: 10.06.2022
Revised: 12.07.2022
Accepted: 25.07.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 2, Pages 326–331
DOI: https://doi.org/10.1134/S1064562422050088
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: B. N. Chetverushkin, O. G. Olkhovskaya, V. A. Gasilov, “On stabilization of an explicit difference scheme for a nonlinear parabolic equation”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 30–36; Dokl. Math., 106:2 (2022), 326–331
Citation in format AMSBIB
\Bibitem{CheOlkGas22}
\by B.~N.~Chetverushkin, O.~G.~Olkhovskaya, V.~A.~Gasilov
\paper On stabilization of an explicit difference scheme for a nonlinear parabolic equation
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 506
\pages 30--36
\mathnet{http://mi.mathnet.ru/danma293}
\crossref{https://doi.org/10.31857/S268695432205006X}
\elib{https://elibrary.ru/item.asp?id=49787597}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 2
\pages 326--331
\crossref{https://doi.org/10.1134/S1064562422050088}
Linking options:
  • https://www.mathnet.ru/eng/danma293
  • https://www.mathnet.ru/eng/danma/v506/p30
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:131
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024