Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 506, Pages 16–19
DOI: https://doi.org/10.31857/S2686954322050034
(Mi danma290)
 

MATHEMATICS

Binary Orlicz spaces

S. V. Astashkin

Samara National Research University, Samara, Russia
References:
Abstract: A subspace $H$ of a rearrangement invariant space $X$ is strongly embedded in $X$ if, on $H$, convergence in the $X$-norm is equivalent to convergence in measure. Necessary and sufficient conditions on an Orlicz function $M$ are obtained under which the unit ball of any subspace strongly embedded in the Orlicz space $L_M$ has equi-absolutely continuous norms in $L_M$.
Keywords: rearrangement invariant space, strongly embedded subspace, Orlicz function, Orlicz space, Matuszewska–Orlicz indices.
Funding agency Grant number
Program of developing the Scientific and Educational Mathematical Center of the Volga Federal District 075-02-2022-878
This work was performed within the program of developing the Scientific and Educational Mathematical Center of the Volga Federal District, agreement no. 075-02-2022-878.
Presented: B. S. Kashin
Received: 13.05.2022
Revised: 02.08.2022
Accepted: 10.08.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 2, Pages 315–317
DOI: https://doi.org/10.1134/S1064562422050052
Bibliographic databases:
Document Type: Article
UDC: 517.982.27
Language: Russian
Citation: S. V. Astashkin, “Binary Orlicz spaces”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 16–19; Dokl. Math., 106:2 (2022), 315–317
Citation in format AMSBIB
\Bibitem{Ast22}
\by S.~V.~Astashkin
\paper Binary Orlicz spaces
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 506
\pages 16--19
\mathnet{http://mi.mathnet.ru/danma290}
\crossref{https://doi.org/10.31857/S2686954322050034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4531976}
\elib{https://elibrary.ru/item.asp?id=49787594}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 2
\pages 315--317
\crossref{https://doi.org/10.1134/S1064562422050052}
Linking options:
  • https://www.mathnet.ru/eng/danma290
  • https://www.mathnet.ru/eng/danma/v506/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024