Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 490, Pages 35–41
DOI: https://doi.org/10.31857/S2686954320010221
(Mi danma29)
 

This article is cited in 6 scientific papers (total in 6 papers)

MATHEMATICS

Stability of numerical methods for solving second-order hyperbolic equations with a small parameter

A. A. Zlotnikab, B. N. Chetverushkinb

a National Research University "Higher School of Economics", Moscow, Russian Federation
b Federal Research Center Keldysh Institute of Applied Mathmatics, Russian Academy of Sciences, Moscow, Russian Federation
Full-text PDF (289 kB) Citations (6)
References:
Abstract: We study a symmetric three-level (in time) method with a weight and a symmetric vector two-level method for solving the initial-boundary value problem for a second-order hyperbolic equation with a small parameter $\tau>0$ multiplying the highest time derivative, where the hyperbolic equation is a perturbation of the corresponding parabolic equation. It is proved that the solutions are uniformly stable in $\tau$ and time in two norms with respect to the initial data and the right-hand side of the equation. Additionally, the case where $\tau$ also multiplies the elliptic part of the equation is covered. The spacial discretization can be performed using the finite-difference or finite element method.
Keywords: second-order hyperbolic equations, small parameter, three- and two-level methods, uniform stability in small parameter and time.
Funding agency Grant number
Russian Science Foundation 19–11–00104
This work was supported by the Russian Science Foundation, project no. 19-11-00104.
Received: 06.09.2019
Revised: 06.09.2019
Accepted: 11.11.2019
English version:
Doklady Mathematics, 2020, Volume 101, Issue 1, Pages 30–35
DOI: https://doi.org/10.1134/S1064562420010226
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: A. A. Zlotnik, B. N. Chetverushkin, “Stability of numerical methods for solving second-order hyperbolic equations with a small parameter”, Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020), 35–41; Dokl. Math., 101:1 (2020), 30–35
Citation in format AMSBIB
\Bibitem{ZloChe20}
\by A.~A.~Zlotnik, B.~N.~Chetverushkin
\paper Stability of numerical methods for solving second-order hyperbolic equations with a small parameter
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 490
\pages 35--41
\mathnet{http://mi.mathnet.ru/danma29}
\crossref{https://doi.org/10.31857/S2686954320010221}
\zmath{https://zbmath.org/?q=an:07424545}
\elib{https://elibrary.ru/item.asp?id=42579055}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 1
\pages 30--35
\crossref{https://doi.org/10.1134/S1064562420010226}
Linking options:
  • https://www.mathnet.ru/eng/danma29
  • https://www.mathnet.ru/eng/danma/v490/p35
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :51
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024