Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 506, Pages 9–15
DOI: https://doi.org/10.31857/S2686954322050198
(Mi danma289)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On second-order parabolic and hyperbolic perturbations of a first-order hyperbolic system

A. A. Zlotnikab, B. N. Chetverushkinb

a Higher School of Economics University, Moscow, Russia
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
Citations (1)
References:
Abstract: We study the Cauchy problems for a first-order symmetric hyperbolic system of equations with variable coefficients and its singular perturbations that are second-order strongly parabolic and hyperbolic systems of equations with a small parameter $\tau>$ 0 in front of the second derivatives with respect to $x$ and $t$. The properties of solutions of all three systems are formulated, and estimates of order $O(\tau^{\alpha/2})$ are given for the difference between the solutions of the original system and systems with perturbations for an initial function $\mathbf{w}_0$ of smoothness $\alpha$ in the sense of $L^2(\mathbb{R}^n)$, 0 $<\alpha\le$ 2. For $\alpha$ = 1/2, a broad class of discontinuous functions $\mathbf{w}_0$ is covered. Applications to the linearized system of gas dynamics equations and to the linearized parabolic and hyperbolic second-order quasi-gasdynamic systems of equations are given.
Keywords: linear systems of partial differential equations, small parameter, estimates for the difference of solutions, quasi-gasdynamic systems of equations.
Funding agency Grant number
Russian Science Foundation 22-11-00126
This work was supported by the Russian Science Foundation, project no. 22-11-00126.
Received: 21.05.2022
Revised: 14.06.2022
Accepted: 18.08.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 2, Pages 308–314
DOI: https://doi.org/10.1134/S1064562422050210
Bibliographic databases:
Document Type: Article
UDC: 517.956.3+517.956.4
Language: Russian
Citation: A. A. Zlotnik, B. N. Chetverushkin, “On second-order parabolic and hyperbolic perturbations of a first-order hyperbolic system”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 9–15; Dokl. Math., 106:2 (2022), 308–314
Citation in format AMSBIB
\Bibitem{ZloChe22}
\by A.~A.~Zlotnik, B.~N.~Chetverushkin
\paper On second-order parabolic and hyperbolic perturbations of a first-order hyperbolic system
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 506
\pages 9--15
\mathnet{http://mi.mathnet.ru/danma289}
\crossref{https://doi.org/10.31857/S2686954322050198}
\elib{https://elibrary.ru/item.asp?id=49787593}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 2
\pages 308--314
\crossref{https://doi.org/10.1134/S1064562422050210}
Linking options:
  • https://www.mathnet.ru/eng/danma289
  • https://www.mathnet.ru/eng/danma/v506/p9
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025