Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 505, Pages 100–104
DOI: https://doi.org/10.31857/S268695432204004X
(Mi danma285)
 

CONTROL PROCESSES

Trajectory of an observer tracking object motion around convex obstacles in $\mathbb{R}^2$ and $\mathbb{R}^3$

V. I. Berdyshev

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
References:
Abstract: An autonomous object moves at a constant speed along the shortest path, while bypassing an ordered collection of pairwise disjoint convex sets. The object is tracked by an observer. The goal of the observer is to find a trajectory of motion along which the object can be tracked at each moment of time and can be followed at a given distance at possibly low speed. Options for the observer’s trajectories with an indication of the speed limit are proposed.
Keywords: navigation, autonomous vehicle, trajectory, observer.
Received: 28.04.2022
Revised: 14.05.2022
Accepted: 28.05.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 1, Pages 298–301
DOI: https://doi.org/10.1134/S1064562422040044
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: V. I. Berdyshev, “Trajectory of an observer tracking object motion around convex obstacles in $\mathbb{R}^2$ and $\mathbb{R}^3$”, Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022), 100–104; Dokl. Math., 106:1 (2022), 298–301
Citation in format AMSBIB
\Bibitem{Ber22}
\by V.~I.~Berdyshev
\paper Trajectory of an observer tracking object motion around convex obstacles in $\mathbb{R}^2$ and $\mathbb{R}^3$
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 505
\pages 100--104
\mathnet{http://mi.mathnet.ru/danma285}
\crossref{https://doi.org/10.31857/S268695432204004X}
\elib{https://elibrary.ru/item.asp?id=49344505}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 1
\pages 298--301
\crossref{https://doi.org/10.1134/S1064562422040044}
Linking options:
  • https://www.mathnet.ru/eng/danma285
  • https://www.mathnet.ru/eng/danma/v505/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:116
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024