|
CONTROL PROCESSES
Trajectory of an observer tracking object motion around convex obstacles in $\mathbb{R}^2$ and $\mathbb{R}^3$
V. I. Berdyshev N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
Abstract:
An autonomous object moves at a constant speed along the shortest path, while bypassing an ordered collection of pairwise disjoint convex sets. The object is tracked by an observer. The goal of the observer is to find a trajectory of motion along which the object can be tracked at each moment of time and can be followed at a given distance at possibly low speed. Options for the observer’s trajectories with an indication of the speed limit are proposed.
Keywords:
navigation, autonomous vehicle, trajectory, observer.
Received: 28.04.2022 Revised: 14.05.2022 Accepted: 28.05.2022
Citation:
V. I. Berdyshev, “Trajectory of an observer tracking object motion around convex obstacles in $\mathbb{R}^2$ and $\mathbb{R}^3$”, Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022), 100–104; Dokl. Math., 106:1 (2022), 298–301
Linking options:
https://www.mathnet.ru/eng/danma285 https://www.mathnet.ru/eng/danma/v505/p100
|
Statistics & downloads: |
Abstract page: | 116 | References: | 20 |
|