Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 505, Pages 56–62
DOI: https://doi.org/10.31857/S2686954322040087
(Mi danma278)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On the problem of describing elements of elliptic fields with a periodic expansion into a continued fraction over quadratic fields

G. V. Fedorov

University of Science and Technology "Sirius", Sochi, Russia
Citations (1)
References:
Abstract: For all possible quadratic number fields $K$, we obtain a description of square-free polynomials $f(x)\in K[x]$ of degree 4 such that $\sqrt f$ has a periodic expansion into a continued fraction in the field of formal power series $K((x))$, while the elliptic field $\mathcal L=K(x)(\sqrt f)$ has a fundamental $S$-unit of degree $m$, $4\le m\le 12$, $m\ne11$, where the set $S$ consists of two conjugate valuations defined on the field $\mathcal{L}$ and related to the uniformizer $x$ of the field $K(x)$.
Keywords: continued fraction, fundamental $S$-unit, elliptic field, divisor class group, cyclotomic polynomials.
Funding agency Grant number
Sirius University FMF-RND-2125
This work was supported by the “Sirius” University within the scientific project FMF-RND-2125.
Presented: V. P. Platonov
Received: 03.03.2022
Revised: 11.03.2022
Accepted: 01.06.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 1, Pages 259–264
DOI: https://doi.org/10.1134/S1064562422040081
Bibliographic databases:
Document Type: Article
UDC: 511.6
Language: Russian
Citation: G. V. Fedorov, “On the problem of describing elements of elliptic fields with a periodic expansion into a continued fraction over quadratic fields”, Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022), 56–62; Dokl. Math., 106:1 (2022), 259–264
Citation in format AMSBIB
\Bibitem{Fed22}
\by G.~V.~Fedorov
\paper On the problem of describing elements of elliptic fields with a periodic expansion into a continued fraction over quadratic fields
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 505
\pages 56--62
\mathnet{http://mi.mathnet.ru/danma278}
\crossref{https://doi.org/10.31857/S2686954322040087}
\elib{https://elibrary.ru/item.asp?id=49344498}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 1
\pages 259--264
\crossref{https://doi.org/10.1134/S1064562422040081}
Linking options:
  • https://www.mathnet.ru/eng/danma278
  • https://www.mathnet.ru/eng/danma/v505/p56
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:126
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024