Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 505, Pages 50–55
DOI: https://doi.org/10.31857/S2686954322040142
(Mi danma277)
 

MATHEMATICS

Ray statement of the acoustic tomography problem

V. G. Romanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: The ray statement of the inverse problem of determining three unknown variable coefficients in the linear acoustic equation is studied. These coefficients are assumed to differ from given constants only inside some bounded domain. There are point pulse sources and acoustic receivers on the boundary of this domain. Acoustic signals are measured by a receiver near the moment of time at which the signal from a source arrives at the receiver. It is shown that this information makes it possible to uniquely determine all the three desired coefficients. Algorithmically, the original inverse problem splits into three subproblems solved successively. One of them is a well-known inverse kinematic problem (of determining the speed of sound), while the other two lead to the same integral geometry problem for a family of geodesic lines determined by the speed of sound.
Keywords: acoustic equation, acoustic tomography, ray expansion, inverse kinematic problem, integral geometry.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation ФВНФ-2022-0009
This study was carried out within the state assignment of the Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, project no. FWNF-2022-0009.
Received: 27.04.2022
Revised: 23.05.2022
Accepted: 24.05.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 1, Pages 254–258
DOI: https://doi.org/10.1134/S1064562422040147
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: V. G. Romanov, “Ray statement of the acoustic tomography problem”, Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022), 50–55; Dokl. Math., 106:1 (2022), 254–258
Citation in format AMSBIB
\Bibitem{Rom22}
\by V.~G.~Romanov
\paper Ray statement of the acoustic tomography problem
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 505
\pages 50--55
\mathnet{http://mi.mathnet.ru/danma277}
\crossref{https://doi.org/10.31857/S2686954322040142}
\elib{https://elibrary.ru/item.asp?id=49344497}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 1
\pages 254--258
\crossref{https://doi.org/10.1134/S1064562422040147}
Linking options:
  • https://www.mathnet.ru/eng/danma277
  • https://www.mathnet.ru/eng/danma/v505/p50
    Erratum
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:117
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024