Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 504, Pages 47–50
DOI: https://doi.org/10.31857/S2686954322030110
(Mi danma263)
 

MATHEMATICS

Solving nonlinear inverse problems based on the regularized modified Gauss–Newton method

V. V. Vasinab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: A nonlinear operator equation is investigated in the case when the Hadamard correctness conditions are violated. A two-stage method is proposed for constructing a stable method for solving the equation. It includes modified Tikhonov regularization and a modified iterative Gauss–Newton process for approximating the solution of the regularized equation. The convergence of the iterations and the strong Fejér property of the process are proved. An order optimal estimate for the error of the two-stage method is established in the class of sourcewise representable functions.
Keywords: ill-posed problem, modified Tikhonov method, modified Gauss–Newton method.
Funding agency Grant number
Russian Science Foundation 18-11-00024-П
This work was supported in part by the Russian Science Foundation, project no. 18-11-00024-P.
Received: 11.01.2022
Revised: 28.03.2022
Accepted: 01.04.2022
English version:
Doklady Mathematics, 2022, Volume 105, Issue 3, Pages 175–177
DOI: https://doi.org/10.1134/S1064562422030103
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
Language: Russian
Citation: V. V. Vasin, “Solving nonlinear inverse problems based on the regularized modified Gauss–Newton method”, Dokl. RAN. Math. Inf. Proc. Upr., 504 (2022), 47–50; Dokl. Math., 105:3 (2022), 175–177
Citation in format AMSBIB
\Bibitem{Vas22}
\by V.~V.~Vasin
\paper Solving nonlinear inverse problems based on the regularized modified Gauss--Newton method
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 504
\pages 47--50
\mathnet{http://mi.mathnet.ru/danma263}
\crossref{https://doi.org/10.31857/S2686954322030110}
\elib{https://elibrary.ru/item.asp?id=48649155}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 3
\pages 175--177
\crossref{https://doi.org/10.1134/S1064562422030103}
Linking options:
  • https://www.mathnet.ru/eng/danma263
  • https://www.mathnet.ru/eng/danma/v504/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:130
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024