Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 504, Pages 42–46
DOI: https://doi.org/10.31857/S2686954322030043
(Mi danma262)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On convergence of finite-difference shock-capturing schemes in regions of shock waves influence

O. A. Kovyrkinaab, V. V. Ostapenkoab, V. F. Tishkinc

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
Citations (1)
References:
Abstract: We perform a comparative accuracy study of the Rusanov, CABARETM, and WENO5 difference schemes used to compute the dam break problem for shallow water theory equations. We demonstrate that all three schemes have the first order of convergence inside the region occupied by a centered rarefaction wave, and the Rusanov scheme has the second order of convergence in the area of constant flow between the shock and the rarefaction wave, while in the CABARETM and WENO5 schemes there is no local convergence in this area. This is due to the fact that the numerical solutions obtained by the CABARETM and WENO5 schemes have undamped oscillations in the region of influence of the shock, the amplitude of which does not decrease with decreasing of the difference grid steps. As a result, taking into account the Lax-Wendroff theorem, the numerical solutions obtained by the conservative schemes CABARETM and WENO5 converge only weakly to the exact constant solution in the region of influence of the shock wave, in contrast to the Rusanov scheme, which locally converges with the second order to the exact solution in this region.
Keywords: Rusanov scheme, CABARET scheme, WENO5 scheme, shock, local convergence of difference solution.
Funding agency Grant number
National Natural Science Foundation of China 21-51-53012
Russian Science Foundation 21-11-00198
The reported study was funded in part by the Russian Foundation for Basic Research and the National Natural Science Foundation of China (project no. 21-51-53012) and by the Russian Science Foundation (project no. 21-11-00198).
Received: 04.10.2021
Revised: 24.01.2022
Accepted: 28.03.2022
English version:
Doklady Mathematics, 2022, Volume 105, Pages 171–174
DOI: https://doi.org/10.1134/S1064562422030048
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: O. A. Kovyrkina, V. V. Ostapenko, V. F. Tishkin, “On convergence of finite-difference shock-capturing schemes in regions of shock waves influence”, Dokl. RAN. Math. Inf. Proc. Upr., 504 (2022), 42–46; Dokl. Math., 105 (2022), 171–174
Citation in format AMSBIB
\Bibitem{KovOstTis22}
\by O.~A.~Kovyrkina, V.~V.~Ostapenko, V.~F.~Tishkin
\paper On convergence of finite-difference shock-capturing schemes in regions of shock waves influence
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 504
\pages 42--46
\mathnet{http://mi.mathnet.ru/danma262}
\crossref{https://doi.org/10.31857/S2686954322030043}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4471703}
\elib{https://elibrary.ru/item.asp?id=48649154}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\pages 171--174
\crossref{https://doi.org/10.1134/S1064562422030048}
Linking options:
  • https://www.mathnet.ru/eng/danma262
  • https://www.mathnet.ru/eng/danma/v504/p42
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:154
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024