Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 504, Pages 36–41
DOI: https://doi.org/10.31857/S2686954322030092
(Mi danma261)
 

This article is cited in 10 scientific papers (total in 10 papers)

MATHEMATICS

An inverse problem for a semilinear wave equation

V. G. Romanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences,Novosibirsk, Russia
Citations (10)
References:
Abstract: For the equation $u_{tt}-\Delta u-f(x,u)=0$, $(x,t)\in\mathbb{R}^4$, where $f(x,u)$ is a smooth function of its variables and is compact in $x$, the inverse problem of recovering this function from given information on solutions of Cauchy problems for the differential equation is studied. Plane waves with a strong front that propagate in a homogeneous medium in the direction of the unit vector $\nu$ and then impinge on an inhomogeneity localized inside some ball $B(R)$ are considered. It is supposed that the solutions of the Cauchy problems can be measured on the boundary of this ball for all $\nu$ at times close to the arriving time of the front. The forward Cauchy problem is studied, and the existence of a unique bounded solution in a neighborhood of a characteristic wedge is stated. An amplitude formula for the derivative of the solution with respect to $t$ on the front of the wave is derived. It is demonstrated that the solution of the inverse problem reduces to a series of X-ray tomography problems.
Keywords: semilinear wave equation, plane waves, X-ray tomography, uniqueness.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences FWNF-2022-0009
This work was performed within the state assignment of the Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Science, project no. FWNF-2022-0009.
Received: 07.02.2022
Revised: 10.03.2022
Accepted: 20.03.2022
English version:
Doklady Mathematics, 2022, Volume 105, Issue 3, Pages 166–170
DOI: https://doi.org/10.1134/S1064562422030097
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: V. G. Romanov, “An inverse problem for a semilinear wave equation”, Dokl. RAN. Math. Inf. Proc. Upr., 504 (2022), 36–41; Dokl. Math., 105:3 (2022), 166–170
Citation in format AMSBIB
\Bibitem{Rom22}
\by V.~G.~Romanov
\paper An inverse problem for a semilinear wave equation
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 504
\pages 36--41
\mathnet{http://mi.mathnet.ru/danma261}
\crossref{https://doi.org/10.31857/S2686954322030092}
\elib{https://elibrary.ru/item.asp?id=48649153}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 3
\pages 166--170
\crossref{https://doi.org/10.1134/S1064562422030097}
Linking options:
  • https://www.mathnet.ru/eng/danma261
  • https://www.mathnet.ru/eng/danma/v504/p36
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:128
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024