Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 490, Pages 20–23
DOI: https://doi.org/10.31857/S268695432001021X
(Mi danma26)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Interpolation problems for functions with zero integrals over balls of fixed radius

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University, Donetsk, Ukraine
Full-text PDF (151 kB) Citations (3)
References:
Abstract: Let $V_r(\mathbb{R}^n)$, $n\ge2$, be the set of functions $f\in L_{\operatorname{loc}}(\mathbb{R}^n)$ with zero integrals over all balls in $\mathbb{R}^n$ of radius $r$. Various interpolation problems for the class $V_r(\mathbb{R}^n)$ are studied. In the case when the set of interpolation nodes is finite, the multiple interpolation problem is solved under general assumptions. For problems with an infinite set of nodes, sufficient solvability conditions are founded. Additionally, we construct a new example of a subset in $\mathbb{R}^n$ for which some nontrivial real analytic function of the class $V_r(\mathbb{R}^n)$ vanishes.
Keywords: interpolation problems, spherical means, mean periodicity.
Presented: S. V. Konyagin
Received: 25.09.2019
Revised: 25.09.2019
Accepted: 29.10.2019
English version:
Doklady Mathematics, 2020, Volume 101, Issue 1, Pages 16–19
DOI: https://doi.org/10.1134/S1064562420010214
Bibliographic databases:
Document Type: Article
UDC: 517.444
Language: Russian
Citation: V. V. Volchkov, Vit. V. Volchkov, “Interpolation problems for functions with zero integrals over balls of fixed radius”, Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020), 20–23; Dokl. Math., 101:1 (2020), 16–19
Citation in format AMSBIB
\Bibitem{VolVol20}
\by V.~V.~Volchkov, Vit.~V.~Volchkov
\paper Interpolation problems for functions with zero integrals over balls of fixed radius
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 490
\pages 20--23
\mathnet{http://mi.mathnet.ru/danma26}
\crossref{https://doi.org/10.31857/S268695432001021X}
\zmath{https://zbmath.org/?q=an:07424542}
\elib{https://elibrary.ru/item.asp?id=42579052}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 1
\pages 16--19
\crossref{https://doi.org/10.1134/S1064562420010214}
Linking options:
  • https://www.mathnet.ru/eng/danma26
  • https://www.mathnet.ru/eng/danma/v490/p20
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025