Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 504, Pages 3–27
DOI: https://doi.org/10.31857/S2686954322030079
(Mi danma258)
 

This article is cited in 3 scientific papers (total in 3 papers)

DETAILED PUBLICATIONS

Randomization and entropy in machine learning and data processing

Yu. S. Popkov

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
Citations (3)
References:
Abstract: Combining the concept of randomization with entropic criteria allows solutions to be obtained in the conditions of maximum uncertainty, which is very effective in machine learning and data processing. The application of this approach in data-based entropy-randomized evaluation of functions, randomized hard and soft machine learning, object clustering, and data matrix dimension reduction is demonstrated. Some applications of classification problems, forecasting the electric load of a power system, and randomized clustering of biological objects are considered.
Keywords: entropy, randomization, machine learning, data processing, parametrization of models, estimates of conditional maximum entropy, balance equations, classification, clustering, generation of random ensembles.
Received: 18.02.2022
Revised: 26.02.2022
Accepted: 04.03.2022
English version:
Doklady Mathematics, 2022, Volume 105, Issue 3, Pages 135–157
DOI: https://doi.org/10.1134/S1064562422030073
Bibliographic databases:
Document Type: Article
UDC: 51-7
Language: Russian
Citation: Yu. S. Popkov, “Randomization and entropy in machine learning and data processing”, Dokl. RAN. Math. Inf. Proc. Upr., 504 (2022), 3–27; Dokl. Math., 105:3 (2022), 135–157
Citation in format AMSBIB
\Bibitem{Pop22}
\by Yu.~S.~Popkov
\paper Randomization and entropy in machine learning and data processing
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 504
\pages 3--27
\mathnet{http://mi.mathnet.ru/danma258}
\crossref{https://doi.org/10.31857/S2686954322030079}
\elib{https://elibrary.ru/item.asp?id=48649149}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 3
\pages 135--157
\crossref{https://doi.org/10.1134/S1064562422030073}
Linking options:
  • https://www.mathnet.ru/eng/danma258
  • https://www.mathnet.ru/eng/danma/v504/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:187
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024