Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 503, Pages 87–90
DOI: https://doi.org/10.31857/S2686954322020096
(Mi danma255)
 

MATHEMATICS

Weakly singular Steklov condition in the multidimensional case

A. G. Chechkinaab

a Lomonosov Moscow State University, Moscow, Russia
b Institute of Mathematics with Computing Center, Ufa Federal Research Center, Russian Academy of Science, Ufa, Bashkortostan, Russia
References:
Abstract: In an $n$-dimensional $(n>3)$ domain, we consider a Steklov-type problem with rapidly changing conditions (the Steklov condition alternates with the homogeneous Dirichlet condition). The coefficient in the Steklov condition is a rapidly oscillating function depending on a small parameter $\varepsilon$ and having the order $O(1)$ outside small spherical layer inclusions and the order $O((\varepsilon\delta)^{-m})$ inside them. These inclusions have an $O(\varepsilon\delta)$ diameter and lie at a distance of $O(\delta)$ from each other, where $\delta=\delta(\varepsilon)\to0$. In the case $m<2$ (weak singularity), the rate of convergence of solutions to the original problem as the small parameter tends to zero is estimated.
Keywords: weak singularity, Steklov problem, boundary homogenization.
Presented: V. V. Kozlov
Received: 26.02.2021
Revised: 26.02.2021
Accepted: 08.02.2022
English version:
Doklady Mathematics, 2022, Volume 105, Issue 2, Pages 127–130
DOI: https://doi.org/10.1134/S1064562422020090
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
Language: Russian
Citation: A. G. Chechkina, “Weakly singular Steklov condition in the multidimensional case”, Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022), 87–90; Dokl. Math., 105:2 (2022), 127–130
Citation in format AMSBIB
\Bibitem{Che22}
\by A.~G.~Chechkina
\paper Weakly singular Steklov condition in the multidimensional case
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 503
\pages 87--90
\mathnet{http://mi.mathnet.ru/danma255}
\crossref{https://doi.org/10.31857/S2686954322020096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448482}
\elib{https://elibrary.ru/item.asp?id=48506210}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 2
\pages 127--130
\crossref{https://doi.org/10.1134/S1064562422020090}
Linking options:
  • https://www.mathnet.ru/eng/danma255
  • https://www.mathnet.ru/eng/danma/v503/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:77
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024