Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 503, Pages 67–69
DOI: https://doi.org/10.31857/S2686954322020138
(Mi danma252)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Classical solutions of the first boundary value problem for parabolic systems on the plane

A. N. Konenkov

Ryazan State University S. A. Esenin, Ryazan, Russia
Citations (3)
References:
Abstract: The first boundary value problem for a second-order parabolic system with one spatial variable in a domain with nonsmooth lateral boundaries is considered. The domain can be bounded or semi-bounded. The coefficients of the system depend only on the spatial variable and satisfy the Hölder condition. The initial and boundary functions are assumed to be continuous and bounded. The existence and uniqueness of a classical solution of this problem is established.
Keywords: parabolic system, first boundary value problem, nonsmooth lateral boundary, classical solution.
Presented: E. I. Moiseev
Received: 19.01.2022
Revised: 19.01.2022
Accepted: 22.01.2022
English version:
Doklady Mathematics, 2022, Volume 105, Issue 2, Pages 109–111
DOI: https://doi.org/10.1134/S1064562422020132
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: A. N. Konenkov, “Classical solutions of the first boundary value problem for parabolic systems on the plane”, Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022), 67–69; Dokl. Math., 105:2 (2022), 109–111
Citation in format AMSBIB
\Bibitem{Kon22}
\by A.~N.~Konenkov
\paper Classical solutions of the first boundary value problem for parabolic systems on the plane
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 503
\pages 67--69
\mathnet{http://mi.mathnet.ru/danma252}
\crossref{https://doi.org/10.31857/S2686954322020138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448478}
\elib{https://elibrary.ru/item.asp?id=48506206}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 2
\pages 109--111
\crossref{https://doi.org/10.1134/S1064562422020132}
Linking options:
  • https://www.mathnet.ru/eng/danma252
  • https://www.mathnet.ru/eng/danma/v503/p67
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:78
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024