Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 503, Pages 26–29
DOI: https://doi.org/10.31857/S2686954322020060
(Mi danma243)
 

This article is cited in 9 scientific papers (total in 9 papers)

MATHEMATICS

Uniqueness of solutions of initial-boundary value problems for parabolic systems with Dini-continuous coefficients in domains on the plane

E. A. Baderko, S. I. Saharov

Lomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
Citations (9)
References:
Abstract: The first and second initial-boundary value problems for Petrovskii parabolic systems of the second order with coefficients satisfying the Dini condition in plane domains with nonsmooth lateral boundaries admitting, in particular, cusps are considered. Theorems on the uniqueness of classical solutions of these problems in the class of functions that are continuous and bounded together with their first spatial derivatives in the closure of these domains are proved.
Keywords: parabolic system, initial-boundary value problem, uniqueness of a classical solution, nonsmooth lateral boundary, boundary integral equations.
Presented: E. I. Moiseev
Received: 19.01.2022
Revised: 19.01.2022
Accepted: 22.01.2022
English version:
Doklady Mathematics, 2022, Volume 105, Issue 2, Pages 71–74
DOI: https://doi.org/10.1134/S1064562422020065
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: E. A. Baderko, S. I. Saharov, “Uniqueness of solutions of initial-boundary value problems for parabolic systems with Dini-continuous coefficients in domains on the plane”, Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022), 26–29; Dokl. Math., 105:2 (2022), 71–74
Citation in format AMSBIB
\Bibitem{BadSah22}
\by E.~A.~Baderko, S.~I.~Saharov
\paper Uniqueness of solutions of initial-boundary value problems for parabolic systems with Dini-continuous coefficients in domains on the plane
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 503
\pages 26--29
\mathnet{http://mi.mathnet.ru/danma243}
\crossref{https://doi.org/10.31857/S2686954322020060}
\elib{https://elibrary.ru/item.asp?id=48506197}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 2
\pages 71--74
\crossref{https://doi.org/10.1134/S1064562422020065}
Linking options:
  • https://www.mathnet.ru/eng/danma243
  • https://www.mathnet.ru/eng/danma/v503/p26
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:85
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024