Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 502, Pages 52–57
DOI: https://doi.org/10.31857/S2686954322010040
(Mi danma238)
 

This article is cited in 3 scientific papers (total in 3 papers)

CONTROL PROCESSES

Optimization of mechanical systems oscillations

Yu. F. Golubev

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
Citations (3)
References:
Abstract: The problem of control of oscillations in the vicinity of the equilibrium position of a scleronomic mechanical system with several degrees of freedom is solved. One degree of freedom is not controllable directly, and the rest are controlled by servos. An original method is proposed for finding the optimal control of amplitude of oscillations of the uncontrolled degree of freedom by the choice of control of other degrees of freedom. The set of controlled coordinates can include both positional and cyclic coordinates. Compared to Pontryagin’s maximum principle, the proposed method does not contain conjugate variables and significantly reduces the dimension of the analyzed system of differential equations. The effectiveness of the proposed method is demonstrated by the example of a specific pendulum system.
Keywords: Mechanical system, oscillations, amplitude, control, optimization.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1623
This work was supported by the Moscow Center for Fundamental and Applied Mathematics with the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2019-1623.
Presented: B. N. Chetverushkin
Received: 02.09.2021
Revised: 22.11.2021
Accepted: 25.11.2021
English version:
Doklady Mathematics, 2022, Volume 105, Issue 1, Pages 45–49
DOI: https://doi.org/10.1134/S1064562422010045
Bibliographic databases:
Document Type: Article
UDC: 531.38
Language: Russian
Citation: Yu. F. Golubev, “Optimization of mechanical systems oscillations”, Dokl. RAN. Math. Inf. Proc. Upr., 502 (2022), 52–57; Dokl. Math., 105:1 (2022), 45–49
Citation in format AMSBIB
\Bibitem{Gol22}
\by Yu.~F.~Golubev
\paper Optimization of mechanical systems oscillations
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 502
\pages 52--57
\mathnet{http://mi.mathnet.ru/danma238}
\crossref{https://doi.org/10.31857/S2686954322010040}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448464}
\elib{https://elibrary.ru/item.asp?id=48050927}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 1
\pages 45--49
\crossref{https://doi.org/10.1134/S1064562422010045}
Linking options:
  • https://www.mathnet.ru/eng/danma238
  • https://www.mathnet.ru/eng/danma/v502/p52
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:180
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024