Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 501, Pages 95–97
DOI: https://doi.org/10.31857/S2686954321060035
(Mi danma228)
 

CONTROL PROCESSES

Trajectory of an observer tracking the motion of an object around a convex set in $\mathbb{R}^3$

V. I. Berdyshev

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
References:
Abstract: An object $t$ moving in $\mathbb{R}^3$ goes around a solid convex set along the shortest path $\mathscr{T}$ under observation. The task of an observer $f$ (moving at the same speed as the object) is to find a trajectory closest to $\mathscr{T}$ that satisfies the condition $\delta\le\|f-t\|\le K\cdot\delta$ for a given $\delta>0$. This condition makes it possible to track the object along the entire trajectory $\mathscr{T}$. A method is proposed for constructing an observer trajectory that ensures that the indicated inequality holds with a constant $K$ arbitrarily close to unity and the object can be observed on its trajectory $\mathscr{T}$, except for an arbitrarily small segment of $\mathscr{T}$.
Keywords: navigation, autonomous vehicle, trajectory, observer.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 075-02-2021-1383
This work was performed at the Ural Mathematical Center and was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-02-2021-1383.
Received: 07.10.2021
Revised: 07.10.2021
Accepted: 21.10.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 3, Pages 399–401
DOI: https://doi.org/10.1134/S106456242106003X
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: V. I. Berdyshev, “Trajectory of an observer tracking the motion of an object around a convex set in $\mathbb{R}^3$”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 95–97; Dokl. Math., 104:3 (2021), 399–401
Citation in format AMSBIB
\Bibitem{Ber21}
\by V.~I.~Berdyshev
\paper Trajectory of an observer tracking the motion of an object around a convex set in $\mathbb{R}^3$
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 501
\pages 95--97
\mathnet{http://mi.mathnet.ru/danma228}
\crossref{https://doi.org/10.31857/S2686954321060035}
\zmath{https://zbmath.org/?q=an:7503287}
\elib{https://elibrary.ru/item.asp?id=47371426}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 3
\pages 399--401
\crossref{https://doi.org/10.1134/S106456242106003X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127739009}
Linking options:
  • https://www.mathnet.ru/eng/danma228
  • https://www.mathnet.ru/eng/danma/v501/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024