Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 501, Pages 74–78
DOI: https://doi.org/10.31857/S268695432106014X
(Mi danma225)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Mathematical modeling of neo-Hookean material growth

P. I. Plotnikov

Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (159 kB) Citations (1)
References:
Abstract: A mathematical model of the volumetric growth of an incompressible neo-Hookean material is derived. Models of this type are used to describe the evolution of the human brain under the action of an external load. In the paper, we show that the space of deformation fields in a homeostatic state coincides with the Möbius group of conformal transforms in $\mathbb{R}^3$. We prove the well-posedness of the linear boundary value problem obtained by linearizing the governing equations around a homeostatic state. The behavior of solutions when the time variable tends to infinity is studied. The main conclusion is that changes in the material, caused by a temporary increase in pressure (hydrocephalus) are irreversible.
Keywords: volumetric growth, neo-Hookean material, Stokes equations, Möbius group.
Funding agency Grant number
Russian Science Foundation 19-11-00069
This work was supported by the Russian Science Foundation, project no. 19-11-00069.
Received: 15.09.2021
Revised: 15.09.2021
Accepted: 04.10.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 3, Pages 380–384
DOI: https://doi.org/10.1134/S1064562421060144
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: P. I. Plotnikov, “Mathematical modeling of neo-Hookean material growth”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 74–78; Dokl. Math., 104:3 (2021), 380–384
Citation in format AMSBIB
\Bibitem{Plo21}
\by P.~I.~Plotnikov
\paper Mathematical modeling of neo-Hookean material growth
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 501
\pages 74--78
\mathnet{http://mi.mathnet.ru/danma225}
\crossref{https://doi.org/10.31857/S268695432106014X}
\zmath{https://zbmath.org/?q=an:7503283}
\elib{https://elibrary.ru/item.asp?id=47371422}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 3
\pages 380--384
\crossref{https://doi.org/10.1134/S1064562421060144}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127831486}
Linking options:
  • https://www.mathnet.ru/eng/danma225
  • https://www.mathnet.ru/eng/danma/v501/p74
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024