Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 501, Pages 42–45
DOI: https://doi.org/10.31857/S2686954321060084
(Mi danma220)
 

MATHEMATICS

Proof of stability in the Brower–Paul problem

A. P. Ivanovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b National Engineering Physics Institute "MEPhI", Moscow, Russia
References:
Abstract: We study the stability of equilibrium in the problem known as “a ball on a rotating saddle”, which was first considered by the famous Dutch mathematician Brauer in 1918. He showed that, in the case of a smooth surface, the saddle point, unstable in the absence of rotation, can be stabilized in a certain range of angular velocities. Later, this system was considered by Bottema from a standpoint of bifurcation theory. The physical analogue of this problem is the Nobel Laureate Paul’s ion trap: here, the rotating solid support is replaced by a quadrupole with a periodically changing voltage and gravity is replaced by an electrostatic field. The stability conditions were obtained in a linear approximation, and their sufficiency has not yet been proven. In this paper, such a proof is carried out by methods of Hamiltonian mechanics.
Keywords: ball on a rotating saddle, stability, KAM theory.
Funding agency Grant number
Russian Science Foundation 19-71-30012
This work was supported by the Russian Science Foundation, project no. 19-71-30012.
Presented: V. V. Kozlov
Received: 16.09.2021
Revised: 16.11.2021
Accepted: 17.11.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 3, Pages 351–354
DOI: https://doi.org/10.1134/S1064562421060089
Bibliographic databases:
Document Type: Article
UDC: 517.93
Language: Russian
Citation: A. P. Ivanov, “Proof of stability in the Brower–Paul problem”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 42–45; Dokl. Math., 104:3 (2021), 351–354
Citation in format AMSBIB
\Bibitem{Iva21}
\by A.~P.~Ivanov
\paper Proof of stability in the Brower--Paul problem
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 501
\pages 42--45
\mathnet{http://mi.mathnet.ru/danma220}
\crossref{https://doi.org/10.31857/S2686954321060084}
\zmath{https://zbmath.org/?q=an:7503277}
\elib{https://elibrary.ru/item.asp?id=47371416}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 3
\pages 351--354
\crossref{https://doi.org/10.1134/S1064562421060089}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127627276}
Linking options:
  • https://www.mathnet.ru/eng/danma220
  • https://www.mathnet.ru/eng/danma/v501/p42
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :16
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024