Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 501, Pages 26–30
DOI: https://doi.org/10.31857/S2686954321060187
(Mi danma217)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

On the maximal cut in a random hypergraph

P. A. Zakharova, D. A. Shabanovabc

a National Research University "Higher School of Economics", Moscow, Russia
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, Russia
c Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (140 kB) Citations (4)
References:
Abstract: This paper deals with the problem of finding the max-cut for random hypergraphs. We consider the classical binomial model $H(n,k,p)$ of a random $k$-uniform hypergraph on $n$ vertices with probability $p=p(n)$. The main results generalize previously known facts for the graph case and show that in the sparse case (when $\displaystyle p=cn/\binom{n}{k}$ for some fixed $c=c(k)>0$ independent of $n)$ there exists $\gamma(c,k,q)>0$ such that the ratio of the maximal cut of $H(n,k,p)$ to the number of vertices converges in probability to $\gamma(c,k,q)>0$. Moreover, we obtain some bounds for the value of $\gamma(c,k,q)$.
Keywords: hypergraphs, random hypergraphs, cut of a hypergraph, interpolation method, optimization problem.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-56017
National Research University Higher School of Economics
This work was supported by the Russian Foundation for Basic Research and INSF (project no. 20-51-56017) and by the basic research program of the HSE University.
Presented: A. N. Shiryaev
Received: 11.08.2021
Revised: 17.08.2021
Accepted: 08.09.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 3, Pages 336–339
DOI: https://doi.org/10.1134/S1064562421060181
Bibliographic databases:
Document Type: Article
UDC: 519.174
Language: Russian
Citation: P. A. Zakharov, D. A. Shabanov, “On the maximal cut in a random hypergraph”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 26–30; Dokl. Math., 104:3 (2021), 336–339
Citation in format AMSBIB
\Bibitem{ZakSha21}
\by P.~A.~Zakharov, D.~A.~Shabanov
\paper On the maximal cut in a random hypergraph
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 501
\pages 26--30
\mathnet{http://mi.mathnet.ru/danma217}
\crossref{https://doi.org/10.31857/S2686954321060187}
\zmath{https://zbmath.org/?q=an:07503274}
\elib{https://elibrary.ru/item.asp?id=47371413}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 3
\pages 336--339
\crossref{https://doi.org/10.1134/S1064562421060181}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127726460}
Linking options:
  • https://www.mathnet.ru/eng/danma217
  • https://www.mathnet.ru/eng/danma/v501/p26
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :21
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024