Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 501, Pages 22–25
DOI: https://doi.org/10.31857/S2686954321060060
(Mi danma216)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Local Marchenko–Pastur law for sparse rectangular random matrices

F. Götzea, D. A. Timushevb, A. N. Tikhomirovb

a Bielefeld University, Bielefeld, Germany
b Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia
Full-text PDF (144 kB) Citations (1)
References:
Abstract: We consider sparse sample covariance matrices with sparsity probability $p_n\ge c_0\log^{\frac2\kappa}n/n$ with $\kappa>0$. Assuming that the distribution of matrix elements has a finite absolute moment of order $4+\delta$, $\delta>0$, it is shown that the distance between the Stieltjes transforms of the empirical spectral distribution function and the Marchenko–Pastur law is of order $\log n(1/(nv)+1/(np_n))$, где where $v$ is the distance to the real axis in the complex plane.
Keywords: local Marchenko–Pastur law, local regime, sparse random matrices, spectrum of a random matrix, Stieltjes transform.
Presented: I. A. Ibragimov
Received: 09.09.2021
Revised: 09.09.2021
Accepted: 27.10.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 3, Pages 332–335
DOI: https://doi.org/10.1134/S1064562421060065
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: F. Götze, D. A. Timushev, A. N. Tikhomirov, “Local Marchenko–Pastur law for sparse rectangular random matrices”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 22–25; Dokl. Math., 104:3 (2021), 332–335
Citation in format AMSBIB
\Bibitem{GotTimTik21}
\by F.~G\"otze, D.~A.~Timushev, A.~N.~Tikhomirov
\paper Local Marchenko--Pastur law for sparse rectangular random matrices
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 501
\pages 22--25
\mathnet{http://mi.mathnet.ru/danma216}
\crossref{https://doi.org/10.31857/S2686954321060060}
\zmath{https://zbmath.org/?q=an:7503273}
\elib{https://elibrary.ru/item.asp?id=47371412}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 3
\pages 332--335
\crossref{https://doi.org/10.1134/S1064562421060065}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127709164}
Linking options:
  • https://www.mathnet.ru/eng/danma216
  • https://www.mathnet.ru/eng/danma/v501/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025