|
This article is cited in 1 scientific paper (total in 1 paper)
MATHEMATICS
Local Marchenko–Pastur law for sparse rectangular random matrices
F. Götzea, D. A. Timushevb, A. N. Tikhomirovb a Bielefeld University, Bielefeld, Germany
b Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia
Abstract:
We consider sparse sample covariance matrices with sparsity probability $p_n\ge c_0\log^{\frac2\kappa}n/n$ with $\kappa>0$. Assuming that the distribution of matrix elements has a finite absolute moment of order $4+\delta$, $\delta>0$, it is shown that the distance between the Stieltjes transforms of the empirical spectral distribution function and the Marchenko–Pastur law is of order $\log n(1/(nv)+1/(np_n))$, где where $v$ is the distance to the real axis in the complex plane.
Keywords:
local Marchenko–Pastur law, local regime, sparse random matrices, spectrum of a random matrix, Stieltjes transform.
Citation:
F. Götze, D. A. Timushev, A. N. Tikhomirov, “Local Marchenko–Pastur law for sparse rectangular random matrices”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 22–25; Dokl. Math., 104:3 (2021), 332–335
Linking options:
https://www.mathnet.ru/eng/danma216 https://www.mathnet.ru/eng/danma/v501/p22
|
|