Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 501, Pages 16–21
DOI: https://doi.org/10.31857/S2686954321060059
(Mi danma215)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

On the spectrum of a non-self-adjoint quasiperiodic operator

D. I. Borisovabc, A. A. Fedotovd

a Institute of Mathematics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
b Bashkir State University, Ufa, Russia
c University of Hradec Králové, Czech Republic
d Saint Petersburg State University, St. Petersburg, Russia
Full-text PDF (296 kB) Citations (4)
References:
Abstract: We study the operator $\mathscr{A}$ acting in $l^2(\mathbb{Z})$ by the formula $(\mathscr{A}u)_l=u_{l+1}+u_{l-1}+\lambda e^{-2\pi i(\theta+\omega l)}u_l$. Here, $l$ is an integer variable, while $\lambda>0$, $\theta\in[0,1)$, and $\omega\in(0,1)$ are parameters. For $\omega\notin\mathbb{Q}$, this is the simplest non-self-adjoint quasiperiodic operator. By means of a renormalization technique, we describe the geometry of the spectrum of this operator, compute the Lyapunov exponent on the spectrum, and describe the conditions under which either the spectrum is pure continuous or a point spectrum appears additionally.
Keywords: quasiperiodic operator, non-self-adjoint operator, Lyapunov exponent, spectrum.
Funding agency Grant number
St. Petersburg Branch of Steklov Mathematical Institute of the Russian Academy of Sciences 075-15-2019-1620
Russian Science Foundation 17-11-01069
This study was performed during Borisov’s visit to the Euler International Mathematical Institute within the framework of the program supported by agreement no. 075-15-2019-1620 between the St. Petersburg Branch of Steklov Mathematical Institute of the Russian Academy of Sciences and the Ministry of Science and Higher Education of the Russian Federation. Fedotov’s research was supported by the Russian Science Foundation, project no. 17-11-01069.
Presented: S. V. Kislyakov
Received: 30.09.2021
Revised: 18.11.2021
Accepted: 18.11.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 3, Pages 326–331
DOI: https://doi.org/10.1134/S1064562421060053
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
Language: Russian
Citation: D. I. Borisov, A. A. Fedotov, “On the spectrum of a non-self-adjoint quasiperiodic operator”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 16–21; Dokl. Math., 104:3 (2021), 326–331
Citation in format AMSBIB
\Bibitem{BorFed21}
\by D.~I.~Borisov, A.~A.~Fedotov
\paper On the spectrum of a non-self-adjoint quasiperiodic operator
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 501
\pages 16--21
\mathnet{http://mi.mathnet.ru/danma215}
\crossref{https://doi.org/10.31857/S2686954321060059}
\zmath{https://zbmath.org/?q=an:7503272}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 3
\pages 326--331
\crossref{https://doi.org/10.1134/S1064562421060053}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127820989}
Linking options:
  • https://www.mathnet.ru/eng/danma215
  • https://www.mathnet.ru/eng/danma/v501/p16
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024