Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 501, Pages 5–10
DOI: https://doi.org/10.31857/S2686954321060023
(Mi danma213)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On stable random variables with a complex stability index

I. A. Alekseev

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (248 kB) Citations (1)
References:
Abstract: In this paper, we construct complex-valued random variables that satisfy the usual stability condition, but for a complex stability index $\alpha$ satisfying the conditions $|\alpha-1|<1$ and $|\alpha-\frac12|\ne\frac12$. A representation of the characteristic functions of the constructed random variables is found, and limit theorems for sums of independent identically distributed random variables are formulated.
Keywords: stable distributions, infinitely divisible distributions, limit theorems.
Presented: I. A. Ibragimov
Received: 31.08.2021
Revised: 18.09.2021
Accepted: 22.09.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 3, Pages 317–321
DOI: https://doi.org/10.1134/S1064562421060028
Bibliographic databases:
Document Type: Article
UDC: 519.213.7
Language: Russian
Citation: I. A. Alekseev, “On stable random variables with a complex stability index”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 5–10; Dokl. Math., 104:3 (2021), 317–321
Citation in format AMSBIB
\Bibitem{Ale21}
\by I.~A.~Alekseev
\paper On stable random variables with a complex stability index
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 501
\pages 5--10
\mathnet{http://mi.mathnet.ru/danma213}
\crossref{https://doi.org/10.31857/S2686954321060023}
\zmath{https://zbmath.org/?q=an:7503270}
\elib{https://elibrary.ru/item.asp?id=47371408}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 3
\pages 317--321
\crossref{https://doi.org/10.1134/S1064562421060028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127757470}
Linking options:
  • https://www.mathnet.ru/eng/danma213
  • https://www.mathnet.ru/eng/danma/v501/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :26
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024