Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 500, Pages 102–106
DOI: https://doi.org/10.31857/S2686954321050052
(Mi danma211)
 

CONTROL PROCESSES

Attraction for mechanical systems with friction

I. A. Finogenko

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia
References:
Abstract: The asymptotic behavior of systems with Coulomb friction represented as Lagrange’s equations of the second kind is investigated. Lyapunov’s direct method is used in combination with the method of limiting equations, which goes back to the works by G.R. Sell (1967) and Z. Artstein (1977, 1978) on topological dynamics of nonautonomous systems. The results generalize LaSalle’s principle of invariance.
Keywords: Lyapunov’s functions, method of limiting equations, limiting differential inclusion, invariance principle, attraction, dry friction, Lagrange equation of the second kind.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1210401300060-4
This work was supported by the Ministry of Education and Science of the Russian Federation in the framework of the project “The theory and methods of studying the evolution of equations and controlled systems with applications”, state registration no. 1210401300060-4.
Presented: S. N. Vassilyev
Received: 02.07.2021
Revised: 02.07.2021
Accepted: 22.07.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 2, Pages 306–310
DOI: https://doi.org/10.1134/S1064562421050057
Bibliographic databases:
Document Type: Article
UDC: 531.911.5, 531.37
Language: Russian
Citation: I. A. Finogenko, “Attraction for mechanical systems with friction”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 102–106; Dokl. Math., 104:2 (2021), 306–310
Citation in format AMSBIB
\Bibitem{Fin21}
\by I.~A.~Finogenko
\paper Attraction for mechanical systems with friction
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 500
\pages 102--106
\mathnet{http://mi.mathnet.ru/danma211}
\crossref{https://doi.org/10.31857/S2686954321050052}
\zmath{https://zbmath.org/?q=an:7492951}
\elib{https://elibrary.ru/item.asp?id=47249639}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 2
\pages 306--310
\crossref{https://doi.org/10.1134/S1064562421050057}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124256716}
Linking options:
  • https://www.mathnet.ru/eng/danma211
  • https://www.mathnet.ru/eng/danma/v500/p102
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :20
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024