Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 500, Pages 97–101
DOI: https://doi.org/10.31857/S2686954321050210
(Mi danma210)
 

This article is cited in 3 scientific papers (total in 3 papers)

CONTROL PROCESSES

Sub-Riemannian Engel sphere

Yu. L. Sachkova, A. Yu. Popovab

a Ailamazyan Program Systems Institute, Russian Academy of Sciences, Pereslavl-Zalessky, Yaroslavl oblast, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
Full-text PDF (228 kB) Citations (3)
References:
Abstract: The structure of the intersection of the sub-Riemannian sphere on the Engel group with a two-dimensional invariant set of discrete symmetries is described: regularity, analytic properties, exp-log category, Whitney stratification, multiplicity of points, characterization in terms of abnormal trajectories, conjugate points and Maxwell points, and explicit expressions for the sub-Riemannian distance to singular points.
Keywords: Engel group, sub-Riemannian geometry, sub-Riemannian sphere.
Funding agency Grant number
Russian Science Foundation 17-11-01387-П
Sections 1–9 and 11 were written by Sachkov, while Section 10, by Popov. Sachkov’s research was supported by the Russian Science Foundation (project no. 17-11-01387-P) and was performed at the Ailamazyan Program Systems Institute of the Russian Academy of Sciences.
Presented: R. V. Gamkrelidze
Received: 19.07.2021
Revised: 26.07.2021
Accepted: 02.09.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 2, Pages 301–305
DOI: https://doi.org/10.1134/S1064562421050215
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: Yu. L. Sachkov, A. Yu. Popov, “Sub-Riemannian Engel sphere”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 97–101; Dokl. Math., 104:2 (2021), 301–305
Citation in format AMSBIB
\Bibitem{SacPop21}
\by Yu.~L.~Sachkov, A.~Yu.~Popov
\paper Sub-Riemannian Engel sphere
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 500
\pages 97--101
\mathnet{http://mi.mathnet.ru/danma210}
\crossref{https://doi.org/10.31857/S2686954321050210}
\zmath{https://zbmath.org/?q=an:7492950}
\elib{https://elibrary.ru/item.asp?id=47249638}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 2
\pages 301--305
\crossref{https://doi.org/10.1134/S1064562421050215}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124349862}
Linking options:
  • https://www.mathnet.ru/eng/danma210
  • https://www.mathnet.ru/eng/danma/v500/p97
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :24
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024