Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 500, Pages 87–91
DOI: https://doi.org/10.31857/S2686954321050167
(Mi danma208)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Adaptive Gauss–Newton method for solving systems of nonlinear equations

N. E. Yudinab

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, Russia
b Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: For systems of nonlinear equations, we propose a new version of the Gauss–Newton method based on the idea of using an upper bound for the residual norm of the system and a quadratic regularization term. The global convergence of the method is proved. Under natural assumptions, global linear convergence is established. The method uses an adaptive strategy to choose hyperparameters of a local model, thus forming a flexible and convenient algorithm that can be implemented using standard convex optimization techniques.
Keywords: systems of nonlinear equations, unimodal optimization, Gauss–Newton method, Polyak–Łojasiewicz condition, inexact proximal mapping inexact oracle, underdetermined model, complexity estimate.
Funding agency Grant number
Russian Science Foundation 21-71-30005
This work was supported by the Russian Science Foundation, project no. 21-71-30005.
Presented: Yu. G. Evtushenko
Received: 27.05.2021
Revised: 03.07.2021
Accepted: 05.07.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 2, Pages 293–296
DOI: https://doi.org/10.1134/S1064562421050161
Bibliographic databases:
Document Type: Article
UDC: 519.853.62
Language: Russian
Citation: N. E. Yudin, “Adaptive Gauss–Newton method for solving systems of nonlinear equations”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 87–91; Dokl. Math., 104:2 (2021), 293–296
Citation in format AMSBIB
\Bibitem{Yud21}
\by N.~E.~Yudin
\paper Adaptive Gauss--Newton method for solving systems of nonlinear equations
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 500
\pages 87--91
\mathnet{http://mi.mathnet.ru/danma208}
\crossref{https://doi.org/10.31857/S2686954321050167}
\zmath{https://zbmath.org/?q=an:7492948}
\elib{https://elibrary.ru/item.asp?id=47249636}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 2
\pages 293--296
\crossref{https://doi.org/10.1134/S1064562421050161}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124337461}
Linking options:
  • https://www.mathnet.ru/eng/danma208
  • https://www.mathnet.ru/eng/danma/v500/p87
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :87
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024