Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 500, Pages 78–86
DOI: https://doi.org/10.31857/S2686954321050143
(Mi danma207)
 

This article is cited in 18 scientific papers (total in 18 papers)

MATHEMATICS

New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds

M. V. Shamolin

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: The integrability of certain classes of homogeneous geodesic, potential, and dissipative dynamical systems on the tangent bundles of finite-dimensional manifolds is shown. In this case, the force fields lead to variable-sign dissipation and generalize previously considered fields.
Keywords: dynamical system, geodesics, potential, integrability, dissipation, transcendental first integral.
Presented: V. V. Kozlov
Received: 27.04.2021
Revised: 05.07.2021
Accepted: 08.07.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 2, Pages 285–292
DOI: https://doi.org/10.1134/S1064562421050148
Bibliographic databases:
Document Type: Article
UDC: 517+531.01
Language: Russian
Citation: M. V. Shamolin, “New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 78–86; Dokl. Math., 104:2 (2021), 285–292
Citation in format AMSBIB
\Bibitem{Sha21}
\by M.~V.~Shamolin
\paper New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 500
\pages 78--86
\mathnet{http://mi.mathnet.ru/danma207}
\crossref{https://doi.org/10.31857/S2686954321050143}
\zmath{https://zbmath.org/?q=an:7492947}
\elib{https://elibrary.ru/item.asp?id=47249635}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 2
\pages 285--292
\crossref{https://doi.org/10.1134/S1064562421050148}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124152183}
Linking options:
  • https://www.mathnet.ru/eng/danma207
  • https://www.mathnet.ru/eng/danma/v500/p78
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :21
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024