Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 500, Pages 62–66
DOI: https://doi.org/10.31857/S268695432105012X
(Mi danma204)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Correct solvability and exponential stability for solutions of Volterra integro-differential equations

N. A. Rautian

Lomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
Full-text PDF (155 kB) Citations (1)
References:
Abstract: Abstract integro-differential equations that are operator models of viscoelasticity problems are studied. The kernels of the integral operators can be specified as sums of decreasing exponentials or sums of Rabotnov functions with positive coefficients, which are widely used in viscoelasticity theory. A method is described whereby the original initial value problem for a model integro-differential equation with operator coefficients in a Hilbert space is reduced to the Cauchy problem for a first-order differential equation. Exponential stability of solutions is established under known assumptions on the kernels of the integral operators. The results are used to establish the correct solvability of the original initial value problem for a Volterra integro-differential equation with corresponding solution estimates.
Keywords: Volterra integro-differential equations, linear differential equations in Hilbert spaces, exponential stability.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1621
Russian Foundation for Basic Research 20-01-00288
Theorems 1 and 3 were proved under the financial support of the Ministry of Education and Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics under agreement no. 075-15-2019-1621. Theorems 2 and 4 were proved under the support of the Russian Foundation for Basic Research, project no. 20-01-00288.
Presented: V. A. Sadovnichii
Received: 08.07.2021
Revised: 08.07.2021
Accepted: 18.08.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 2, Pages 273–276
DOI: https://doi.org/10.1134/S1064562421050124
Bibliographic databases:
Document Type: Article
UDC: 517.968.72
Language: Russian
Citation: N. A. Rautian, “Correct solvability and exponential stability for solutions of Volterra integro-differential equations”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 62–66; Dokl. Math., 104:2 (2021), 273–276
Citation in format AMSBIB
\Bibitem{Rau21}
\by N.~A.~Rautian
\paper Correct solvability and exponential stability for solutions of Volterra integro-differential equations
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 500
\pages 62--66
\mathnet{http://mi.mathnet.ru/danma204}
\crossref{https://doi.org/10.31857/S268695432105012X}
\zmath{https://zbmath.org/?q=an:7492944}
\elib{https://elibrary.ru/item.asp?id=47249632}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 2
\pages 273--276
\crossref{https://doi.org/10.1134/S1064562421050124}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124289652}
Linking options:
  • https://www.mathnet.ru/eng/danma204
  • https://www.mathnet.ru/eng/danma/v500/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:110
    Full-text PDF :24
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024