Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 500, Pages 40–44
DOI: https://doi.org/10.31857/S2686954321050076
(Mi danma202)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Mathematical modeling of 3D dynamic processes near a fracture using the Schoenberg fracture model

I. B. Petrovab, P. V. Stogniia, N. I. Khokhlovab

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, Russia
b Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (698 kB) Citations (1)
References:
Abstract: Fractured media are important objects of investigation, because they accumulate oil. Hydraulic fracturing is of great practical interest. The exploration of such heterogeneities with the help of mathematical modeling methods makes it possible to examine different problem formulations with fractures of different forms, sizes, and other characteristics. The Schoenberg fracture model takes into account the characteristics of the fluid inside the fracture, which is utterly important in conducting seismic geological surveys. In this work, an algorithm for computing the medium parameters at the boundary of a fracture described by the Schoenberg model is developed using the grid-characteristic method. We present the results obtained by applying the developed algorithm to the solution of the problem of seismic monitoring of a hydraulic fracture, where the fracture-filling fluid is a necessary part of the investigation.
Keywords: fracture models, seismology, grid-characteristic method, hydraulic fracturing.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00281
This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00281.
Received: 18.06.2021
Revised: 18.06.2021
Accepted: 08.08.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 2, Pages 254–257
DOI: https://doi.org/10.1134/S1064562421050070
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: I. B. Petrov, P. V. Stognii, N. I. Khokhlov, “Mathematical modeling of 3D dynamic processes near a fracture using the Schoenberg fracture model”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 40–44; Dokl. Math., 104:2 (2021), 254–257
Citation in format AMSBIB
\Bibitem{PetStoKho21}
\by I.~B.~Petrov, P.~V.~Stognii, N.~I.~Khokhlov
\paper Mathematical modeling of 3D dynamic processes near a fracture using the Schoenberg fracture model
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 500
\pages 40--44
\mathnet{http://mi.mathnet.ru/danma202}
\crossref{https://doi.org/10.31857/S2686954321050076}
\zmath{https://zbmath.org/?q=an:7492940}
\elib{https://elibrary.ru/item.asp?id=47249628}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 2
\pages 254--257
\crossref{https://doi.org/10.1134/S1064562421050070}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124356407}
Linking options:
  • https://www.mathnet.ru/eng/danma202
  • https://www.mathnet.ru/eng/danma/v500/p40
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024