Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 500, Pages 35–39
DOI: https://doi.org/10.31857/S2686954321050209
(Mi danma201)
 

MATHEMATICS

Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain

A. A. Kon'kov

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Comparison theorems are obtained with the help of which the spherical maximum of solutions of quasilinear elliptic inequalities containing lower-order derivatives is estimated in terms of solutions of the Cauchy problem for an ordinary differential equation with a right-hand side depending on the geometry of the domain.
Keywords: nonlinear elliptic operators, unbounded domains, capacity.
Funding agency Grant number
Russian Science Foundation 20-11-20272
This work was supported by the Russian Science Foundation, grant no. 20-11-20272.
Presented: V. V. Kozlov
Received: 08.07.2021
Revised: 08.07.2021
Accepted: 08.08.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 2, Pages 250–253
DOI: https://doi.org/10.1134/S1064562421050203
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: A. A. Kon'kov, “Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 35–39; Dokl. Math., 104:2 (2021), 250–253
Citation in format AMSBIB
\Bibitem{Kon21}
\by A.~A.~Kon'kov
\paper Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 500
\pages 35--39
\mathnet{http://mi.mathnet.ru/danma201}
\crossref{https://doi.org/10.31857/S2686954321050209}
\zmath{https://zbmath.org/?q=an:7492939}
\elib{https://elibrary.ru/item.asp?id=47249627}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 2
\pages 250--253
\crossref{https://doi.org/10.1134/S1064562421050203}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124306861}
Linking options:
  • https://www.mathnet.ru/eng/danma201
  • https://www.mathnet.ru/eng/danma/v500/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :16
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024