Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 500, Pages 16–22
DOI: https://doi.org/10.31857/S2686954321050192
(Mi danma197)
 

MATHEMATICS

Axiomatic definition of small cancellation rings

A. S. Atkarskayaab, A. Ya. Kanel-Belovacd, E. B. Plotkina, E. Ripsb

a Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
b Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, Russia
d College of Mathematics and Statistics, Shenzhen University, Shenzhen, China
References:
Abstract: In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring.
Keywords: small cancellation ring, turn, multi-turn, defining relations in rings, small cancellation group, group algebra.
Funding agency Grant number
Israel Science Foundation 1994/20
Russian Science Foundation 17-11-01377
The research of the first and third authors was supported by ISF (grant 1994/20) and the Emmy Noether Research Institute for Mathematics. The research of the first and fourth authors was also supported by the ISF fellowship. The research of the second author was supported by the Russian Science Foundation, grant 17-11-01377.
Presented: A. L. Semenov
Received: 18.01.2021
Revised: 15.03.2021
Accepted: 18.08.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 2, Pages 234–239
DOI: https://doi.org/10.1134/S1064562421050197
Bibliographic databases:
Document Type: Article
UDC: 512.555, 512.543
Language: Russian
Citation: A. S. Atkarskaya, A. Ya. Kanel-Belov, E. B. Plotkin, E. Rips, “Axiomatic definition of small cancellation rings”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 16–22; Dokl. Math., 104:2 (2021), 234–239
Citation in format AMSBIB
\Bibitem{AtkKanPlo21}
\by A.~S.~Atkarskaya, A.~Ya.~Kanel-Belov, E.~B.~Plotkin, E.~Rips
\paper Axiomatic definition of small cancellation rings
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 500
\pages 16--22
\mathnet{http://mi.mathnet.ru/danma197}
\crossref{https://doi.org/10.31857/S2686954321050192}
\zmath{https://zbmath.org/?q=an:7492935}
\elib{https://elibrary.ru/item.asp?id=47249623}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 2
\pages 234--239
\crossref{https://doi.org/10.1134/S1064562421050197}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124378029}
Linking options:
  • https://www.mathnet.ru/eng/danma197
  • https://www.mathnet.ru/eng/danma/v500/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :24
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024