Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 499, Pages 58–62
DOI: https://doi.org/10.31857/S2686954321040020
(Mi danma191)
 

INFORMATICS

On one approach to the numerical solution of a coefficient inverse problem

A. F. Albu, Yu. G. Evtushenko, V. I. Zubov

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: An approach to solving the problem of determining the thermal conductivity coefficient of a substance based on the results of observing the dynamics of the temperature field is proposed. The effectiveness of the proposed approach is based on the application of the modern fast automatic differentiation methodology. The required thermal conductivity coefficient is determined from the solution of the formulated optimal control problem.
Keywords: coefficient inverse problems, nonlinear problems, heat equation, optimal control, numerical optimization methods, fast automatic differentiation.
Funding agency Grant number
Russian Science Foundation 21-71-30005
This work was supported by the Russian Science Foundation, project no. 21-71-30005.
Received: 02.04.2021
Revised: 02.04.2021
Accepted: 08.06.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 1, Pages 208–211
DOI: https://doi.org/10.1134/S1064562421040025
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: A. F. Albu, Yu. G. Evtushenko, V. I. Zubov, “On one approach to the numerical solution of a coefficient inverse problem”, Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021), 58–62; Dokl. Math., 104:1 (2021), 208–211
Citation in format AMSBIB
\Bibitem{AlbEvtZub21}
\by A.~F.~Albu, Yu.~G.~Evtushenko, V.~I.~Zubov
\paper On one approach to the numerical solution of a coefficient inverse problem
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 499
\pages 58--62
\mathnet{http://mi.mathnet.ru/danma191}
\crossref{https://doi.org/10.31857/S2686954321040020}
\zmath{https://zbmath.org/?q=an:7427868}
\elib{https://elibrary.ru/item.asp?id=46532756}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 1
\pages 208--211
\crossref{https://doi.org/10.1134/S1064562421040025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118709705}
Linking options:
  • https://www.mathnet.ru/eng/danma191
  • https://www.mathnet.ru/eng/danma/v499/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :20
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024