Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 499, Pages 13–16
DOI: https://doi.org/10.31857/S2686954321040160
(Mi danma183)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Sharp dimension estimates for the attractors of the regularized damped Euler system

S. V. Zelikab, A. A. Ilyinc, A. G. Kostyankob

a Department of Mathematics, University of Surrey, Guildford, United Kingdom
b School of Mathematics and Statistics, Lanzhou University, Lanzhou, China
c Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (131 kB) Citations (2)
References:
Abstract: A regularized damped Euler system in two-dimensional and three-dimensional setting is considered. The existence of a global attractor is proved and explicit estimates of its fractal dimension are given. In the case of periodic boundary conditions both in two-dimensional and three-dimensional cases, it is proved that the obtained upper bounds are sharp in the limit $a\to0^+$, where $a$ is the parameter describing smoothing of the vector field in the nonlinear term.
Keywords: inviscid Euler–Bardina model, attractors, fractal dimension, Kolmogorov flows.
Presented: B. N. Chetverushkin
Received: 14.05.2021
Revised: 04.06.2021
Accepted: 04.06.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 1, Pages 169–172
DOI: https://doi.org/10.1134/S1064562421040165
Bibliographic databases:
Document Type: Article
UDC: 517.957, 517.984
Language: Russian
Citation: S. V. Zelik, A. A. Ilyin, A. G. Kostyanko, “Sharp dimension estimates for the attractors of the regularized damped Euler system”, Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021), 13–16; Dokl. Math., 104:1 (2021), 169–172
Citation in format AMSBIB
\Bibitem{ZelIlyKos21}
\by S.~V.~Zelik, A.~A.~Ilyin, A.~G.~Kostyanko
\paper Sharp dimension estimates for the attractors of the regularized damped Euler system
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 499
\pages 13--16
\mathnet{http://mi.mathnet.ru/danma183}
\crossref{https://doi.org/10.31857/S2686954321040160}
\zmath{https://zbmath.org/?q=an:1477.35149}
\elib{https://elibrary.ru/item.asp?id=46532744}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 1
\pages 169--172
\crossref{https://doi.org/10.1134/S1064562421040165}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118742999}
Linking options:
  • https://www.mathnet.ru/eng/danma183
  • https://www.mathnet.ru/eng/danma/v499/p13
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :23
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024