Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 498, Pages 51–54
DOI: https://doi.org/10.31857/S2686954321030127
(Mi danma176)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Plans' periodicity theorem for Jacobian of circulant graphs

A. D. Mednykhab, I. A. Mednykhab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (133 kB) Citations (2)
References:
Abstract: Plans' theorem states that, for odd n, the first homology group of the $n$-fold cyclic covering of the three-dimensional sphere branched over a knot is the direct product of two copies of an Abelian group. A similar statement holds for even $n$. In this case, one has to factorize the homology group of $n$-fold covering by the homology group of two-fold covering of the knot. The aim of this paper is to establish similar results for Jacobians (critical group) of a circulant graph. Moreover, it is shown that the Jacobian group of a circulant graph on $n$ vertices reduced modulo a given finite Abelian group is a periodic function of $n$.
Keywords: Alexander polynomial, knot, knot branched covering, circulant graph, critical group, cyclic covering, homology group.
Funding agency Grant number
Mathematical Center in Akademgorodok 075-15-2019-1613
This work was supported by the Mathematical Center in Akademgorodok, agreement no. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.
Presented: Yu. G. Reshetnyak
Received: 10.03.2021
Revised: 10.03.2021
Accepted: 18.03.2021
English version:
Doklady Mathematics, 2021, Volume 103, Issue 3, Pages 139–142
DOI: https://doi.org/10.1134/S1064562421030121
Bibliographic databases:
Document Type: Article
UDC: 517.545+517.962.2+519.173
Language: Russian
Citation: A. D. Mednykh, I. A. Mednykh, “Plans' periodicity theorem for Jacobian of circulant graphs”, Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 51–54; Dokl. Math., 103:3 (2021), 139–142
Citation in format AMSBIB
\Bibitem{MedMed21}
\by A.~D.~Mednykh, I.~A.~Mednykh
\paper Plans' periodicity theorem for Jacobian of circulant graphs
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 498
\pages 51--54
\mathnet{http://mi.mathnet.ru/danma176}
\crossref{https://doi.org/10.31857/S2686954321030127}
\zmath{https://zbmath.org/?q=an:1477.57007}
\elib{https://elibrary.ru/item.asp?id=46153890}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 3
\pages 139--142
\crossref{https://doi.org/10.1134/S1064562421030121}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114041719}
Linking options:
  • https://www.mathnet.ru/eng/danma176
  • https://www.mathnet.ru/eng/danma/v498/p51
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :35
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024