Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 498, Pages 45–50
DOI: https://doi.org/10.31857/S2686954321030115
(Mi danma175)
 

MATHEMATICS

Three infinite families of Shilla graphs do not exist

A. A. Makhneva, I. N. Belousova, M. P. Golubyatnikova, M. S. Nirovab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
b Kabardino-Balkar State University, Nalchik, Russia
References:
Abstract: A distance-regular graph of diameter 3 with the second eigenvalue $\theta_1=a_3$ is called a Shilla graph. For a Shilla graph $\Gamma$, the number $a=a^3$ divides $k$ and we set $b=b(\Gamma)=k/a$. Three infinite families of Shilla graphs with the following admissible intersection arrays were found earlier: $\{b(b^2-1),b^2(b-1),b^2;1,1,(b^2-1)(b-1)\}$ (I.N. Belousov), $\{b^2(b-1)/2,(b-1)(b^2-b+2)/2,b(b-1)4;1,b(b-1)/4,b(b-1)^2/2\}$ (Koolen, Park), and $\{(s+1)(s^3-1),s^4,s^3;1,s^2,s(s^3-1)\}$. In this paper, it is proved that, in the first family, there exists a unique graph, namely, a generalized hexagon of order 2, whereas there are no graphs in the second or third families.
Keywords: distance-regular graph, Shilla graph, triple intersection numbers.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-53013
This work was supported by the Russian Foundation for Basic Research jointly with the GFEN of China, project no. 20-51-53013.
Received: 30.03.2021
Revised: 30.03.2021
Accepted: 27.04.2021
English version:
Doklady Mathematics, 2021, Volume 103, Issue 3, Pages 133–138
DOI: https://doi.org/10.1134/S106456242103011X
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: A. A. Makhnev, I. N. Belousov, M. P. Golubyatnikov, M. S. Nirova, “Three infinite families of Shilla graphs do not exist”, Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 45–50; Dokl. Math., 103:3 (2021), 133–138
Citation in format AMSBIB
\Bibitem{MakBelGol21}
\by A.~A.~Makhnev, I.~N.~Belousov, M.~P.~Golubyatnikov, M.~S.~Nirova
\paper Three infinite families of Shilla graphs do not exist
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 498
\pages 45--50
\mathnet{http://mi.mathnet.ru/danma175}
\crossref{https://doi.org/10.31857/S2686954321030115}
\zmath{https://zbmath.org/?q=an:1477.05065}
\elib{https://elibrary.ru/item.asp?id=46153889}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 3
\pages 133--138
\crossref{https://doi.org/10.1134/S106456242103011X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85117237654}
Linking options:
  • https://www.mathnet.ru/eng/danma175
  • https://www.mathnet.ru/eng/danma/v498/p45
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :20
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024