Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 498, Pages 27–30
DOI: https://doi.org/10.31857/S2686954321030061
(Mi danma172)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On the Bellman function method for operators on martingales

V. A. Borovitskiiab, N. N. Osipovac, A. S. Tselishchevab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
c International Laboratory of Game Theory and Decision Making, National Research University Higher School of Economics, St. Petersburg, Russia
Full-text PDF (152 kB) Citations (1)
References:
Abstract: It is shown how to apply the Bellman function method to general operators on martingales, i.e., to operators that are not necessarily martingale transforms. As examples of such operators, we consider the Haar transforms and an operator whose $L^p$-boundedness implies the Rubio de Francia inequality for the Walsh system. For the corresponding Bellman function, the Bellman induction is carried out and a Bellman candidate is constructed.
Keywords: Burkholder method, Gundy theorem, Walsh system, Rubio de Francia inequality, Haar transform.
Funding agency Grant number
Foundation for the Advancement of Theoretical Physics and Mathematics BASIS
HSE Academic Fund Programme
The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”. The second author also acknowledges the support of the HSE University Basic Research Program.
Presented: S. V. Kislyakov
Received: 19.03.2021
Revised: 19.03.2021
Accepted: 06.04.2021
English version:
Doklady Mathematics, 2021, Volume 103, Issue 3, Pages 118–121
DOI: https://doi.org/10.1134/S1064562421030066
Bibliographic databases:
Document Type: Article
UDC: 519.216.8, 517.977.54, 517.983.23
Language: Russian
Citation: V. A. Borovitskii, N. N. Osipov, A. S. Tselishchev, “On the Bellman function method for operators on martingales”, Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 27–30; Dokl. Math., 103:3 (2021), 118–121
Citation in format AMSBIB
\Bibitem{BorOsiTse21}
\by V.~A.~Borovitskii, N.~N.~Osipov, A.~S.~Tselishchev
\paper On the Bellman function method for operators on martingales
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 498
\pages 27--30
\mathnet{http://mi.mathnet.ru/danma172}
\crossref{https://doi.org/10.31857/S2686954321030061}
\zmath{https://zbmath.org/?q=an:1477.42027}
\elib{https://elibrary.ru/item.asp?id=46153885}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 3
\pages 118--121
\crossref{https://doi.org/10.1134/S1064562421030066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111220457}
Linking options:
  • https://www.mathnet.ru/eng/danma172
  • https://www.mathnet.ru/eng/danma/v498/p27
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :13
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024