Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 498, Pages 5–9
DOI: https://doi.org/10.31857/S2686954321030024
(Mi danma168)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Representation of synthesizable differentiation-invariant subspaces of the Schwartz space

N. F. Abuzyarova

Bashkir State University, Ufa, Bashkortostan, Russia
Full-text PDF (149 kB) Citations (2)
References:
Abstract: We consider a differentiation-invariant subspace $W$ in the Schwartz space $C^\infty(a;b)$ which admits weak spectral synthesis. We obtain the conditions under which W can be represented as the direct (algebraic and topological) sum of its residual subspace and the closed subspace spanned by the set of exponential monomials contained in $W$.
Keywords: spectral synthesis, invariant subspaces, slowly decreasing function, Beurling–Malliavin density.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation FZWU-2020-0027
This work was supported by the Ministry of Science and Higher Education of the Russian Federation, subject code FZWU-2020-0027.
Presented: V. A. Sadovnichii
Received: 16.12.2020
Revised: 27.04.2021
Accepted: 28.04.2021
English version:
Doklady Mathematics, 2021, Volume 103, Issue 3, Pages 99–102
DOI: https://doi.org/10.1134/S1064562421030029
Bibliographic databases:
Document Type: Article
UDC: 517.538.2+517.518.3+517.984.26+517.547.2
Language: Russian
Citation: N. F. Abuzyarova, “Representation of synthesizable differentiation-invariant subspaces of the Schwartz space”, Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 5–9; Dokl. Math., 103:3 (2021), 99–102
Citation in format AMSBIB
\Bibitem{Abu21}
\by N.~F.~Abuzyarova
\paper Representation of synthesizable differentiation-invariant subspaces of the Schwartz space
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 498
\pages 5--9
\mathnet{http://mi.mathnet.ru/danma168}
\crossref{https://doi.org/10.31857/S2686954321030024}
\zmath{https://zbmath.org/?q=an:7424709}
\elib{https://elibrary.ru/item.asp?id=46153881}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 3
\pages 99--102
\crossref{https://doi.org/10.1134/S1064562421030029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114021041}
Linking options:
  • https://www.mathnet.ru/eng/danma168
  • https://www.mathnet.ru/eng/danma/v498/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :14
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024