Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 497, Pages 31–34
DOI: https://doi.org/10.31857/S2686954321020065
(Mi danma166)
 

This article is cited in 2 scientific papers (total in 2 papers)

INFORMATICS

Method for reduced basis discovery in nonstationary problems

I. V. Timokhinab, S. A. Matveevab, E. E. Tyrtyshnikovab, A. P. Smirnova

a Lomonosov Moscow State University, Moscow, Russia
b Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (78 kB) Citations (2)
References:
Abstract: Model reduction methods allow to significantly decrease the time required to solve a large ODE system in some cases by performing all calculations in a vector space of significantly lower dimension than the original one. These methods frequently require apriori information about the structure of the solution, possibly obtained by solving the same system for different values of parameters. We suggest a simple algorithm for constructing such a subspace while simultaneously solving the system, thus allowing one to benefit from model reduction even for a single system without significant apriori information, and demonstrate its effectiveness using the Smoluchowski equation as an example.
Keywords: Smoluchwoski equation, model reduction, method of snapshots.
Funding agency Grant number
Russian Science Foundation 19-11-00338
This work has been supported by the Russian Science Foundation (project no. 19-11-00338).
Received: 16.02.2021
Revised: 16.02.2021
Accepted: 24.02.2021
English version:
Doklady Mathematics, 2021, Volume 103, Issue 2, Pages 92–94
DOI: https://doi.org/10.1134/S106456242102006X
Bibliographic databases:
Document Type: Article
UDC: 519.622.2
Language: Russian
Citation: I. V. Timokhin, S. A. Matveev, E. E. Tyrtyshnikov, A. P. Smirnov, “Method for reduced basis discovery in nonstationary problems”, Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 31–34; Dokl. Math., 103:2 (2021), 92–94
Citation in format AMSBIB
\Bibitem{TimMatTyr21}
\by I.~V.~Timokhin, S.~A.~Matveev, E.~E.~Tyrtyshnikov, A.~P.~Smirnov
\paper Method for reduced basis discovery in nonstationary problems
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 497
\pages 31--34
\mathnet{http://mi.mathnet.ru/danma166}
\crossref{https://doi.org/10.31857/S2686954321020065}
\zmath{https://zbmath.org/?q=an:1482.65111}
\elib{https://elibrary.ru/item.asp?id=45683732}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 2
\pages 92--94
\crossref{https://doi.org/10.1134/S106456242102006X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111135630}
Linking options:
  • https://www.mathnet.ru/eng/danma166
  • https://www.mathnet.ru/eng/danma/v497/p31
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :31
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024