Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 497, Pages 7–11
DOI: https://doi.org/10.31857/S2686954321020077
(Mi danma162)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

A method of defining central and Gibbs measures and the ergodic method

A. M. Vershikabc

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Saint Petersburg State University, St. Petersburg, Russia
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
Full-text PDF (90 kB) Citations (3)
References:
Abstract: We formulate a general statement of the problem of defining invariant measures with certain properties and suggest an ergodic method of perturbations for describing such measures.
Keywords: equivalence relation, cocycle, invariant measures, Markov chains, cotransitions.
Presented: V. V. Kozlov
Received: 02.02.2021
Revised: 02.02.2021
Accepted: 24.02.2021
English version:
Doklady Mathematics, 2021, Volume 103, Issue 2, Pages 72–75
DOI: https://doi.org/10.1134/S1064562421020071
Bibliographic databases:
Document Type: Article
UDC: 519.857
Language: Russian
Citation: A. M. Vershik, “A method of defining central and Gibbs measures and the ergodic method”, Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 7–11; Dokl. Math., 103:2 (2021), 72–75
Citation in format AMSBIB
\Bibitem{Ver21}
\by A.~M.~Vershik
\paper A method of defining central and Gibbs measures and the ergodic method
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 497
\pages 7--11
\mathnet{http://mi.mathnet.ru/danma162}
\crossref{https://doi.org/10.31857/S2686954321020077}
\zmath{https://zbmath.org/?q=an:7424703}
\elib{https://elibrary.ru/item.asp?id=45683728}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 2
\pages 72--75
\crossref{https://doi.org/10.1134/S1064562421020071}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111165286}
Linking options:
  • https://www.mathnet.ru/eng/danma162
  • https://www.mathnet.ru/eng/danma/v497/p7
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :23
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024