Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 496, Pages 73–78
DOI: https://doi.org/10.31857/S2686954321010100
(Mi danma158)
 

CONTROL PROCESSES

Sub-riemannian (2, 3, 5, 6)-structures

Yu. L. Sachkov, E. F. Sachkova

Ailamazyan Program Systems Institute of Russian Academy of Sciences, Pereslavl-Zalessky, Yaroslavskaja region, Russian Federation
References:
Abstract: We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.
Keywords: sub-Riemannian geometry, Carnot algebras, Carnot groups, left-invariant sub-Riemannian structures.
Funding agency Grant number
Russian Science Foundation 17-11-01387-П
This work was supported by the Russian Science Foundation (project no. 17-11-01387-P) and was performed at the Ailamazyan Program Systems Institute of the Russian Academy of Sciences.
Presented: R. V. Gamkrelidze
Received: 26.10.2020
Revised: 28.12.2020
Accepted: 28.12.2020
English version:
Doklady Mathematics, 2021, Volume 103, Issue 1, Pages 61–65
DOI: https://doi.org/10.1134/S1064562421010105
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: Yu. L. Sachkov, E. F. Sachkova, “Sub-riemannian (2, 3, 5, 6)-structures”, Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 73–78; Dokl. Math., 103:1 (2021), 61–65
Citation in format AMSBIB
\Bibitem{SacSac21}
\by Yu.~L.~Sachkov, E.~F.~Sachkova
\paper Sub-riemannian (2, 3, 5, 6)-structures
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 496
\pages 73--78
\mathnet{http://mi.mathnet.ru/danma158}
\crossref{https://doi.org/10.31857/S2686954321010100}
\zmath{https://zbmath.org/?q=an:1481.53045}
\elib{https://elibrary.ru/item.asp?id=44829637}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 1
\pages 61--65
\crossref{https://doi.org/10.1134/S1064562421010105}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102268342}
Linking options:
  • https://www.mathnet.ru/eng/danma158
  • https://www.mathnet.ru/eng/danma/v496/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :31
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024