Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 496, Pages 64–67
DOI: https://doi.org/10.31857/S2686954321010124
(Mi danma156)
 

MATHEMATICS

Isometries on noncommutative symmetric spaces

F. A. Sukochevab, Jinghao Huanga

a School of Mathematics and Statistics, University of New South Wales, Kensington, Australia
b North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz, Russian Federation
References:
Abstract: Let $\mathscr{M}$ be an atomless semifinite von Neumann algebra equipped with a faithful normal semifinite trace $\tau$ (or else, an atomic von Neumann algebra with all atoms having the same trace) acting on a separable Hilbert space $\mathscr{H}$. Let $E(\mathscr{M},\tau)$ be a separable symmetric space of $\tau$-measurable operators, whose norm is not proportional to the Hilbert norm $\|\cdot\|_2$ on $L_2(\mathscr{M},\tau)$. We provide a description of all bounded Hermitian operators on $E(\mathscr{M},\tau)$ and all surjective linear isometries of this space.
Keywords: surjective isometries, Hermitian operators, semifinite von Neumann algebra, symmetric spaces.
Funding agency Grant number
Australian Research Council
The research was funded partially by the Australian Research Council.
Presented: B. S. Kashin
Received: 02.11.2020
Revised: 02.11.2020
Accepted: 24.11.2020
English version:
Doklady Mathematics, 2021, Volume 103, Issue 1, Pages 54–56
DOI: https://doi.org/10.1134/S1064562421010129
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: F. A. Sukochev, Jinghao Huang, “Isometries on noncommutative symmetric spaces”, Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 64–67; Dokl. Math., 103:1 (2021), 54–56
Citation in format AMSBIB
\Bibitem{SukHua21}
\by F.~A.~Sukochev, Jinghao~Huang
\paper Isometries on noncommutative symmetric spaces
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 496
\pages 64--67
\mathnet{http://mi.mathnet.ru/danma156}
\crossref{https://doi.org/10.31857/S2686954321010124}
\zmath{https://zbmath.org/?q=an:7424697}
\elib{https://elibrary.ru/item.asp?id=44829634}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 1
\pages 54--56
\crossref{https://doi.org/10.1134/S1064562421010129}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105491837}
Linking options:
  • https://www.mathnet.ru/eng/danma156
  • https://www.mathnet.ru/eng/danma/v496/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :44
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024