|
MATHEMATICS
Isometries on noncommutative symmetric spaces
F. A. Sukochevab, Jinghao Huanga a School of Mathematics and Statistics, University of New South Wales, Kensington, Australia
b North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz, Russian Federation
Abstract:
Let $\mathscr{M}$ be an atomless semifinite von Neumann algebra equipped with a faithful normal semifinite trace $\tau$ (or else, an atomic von Neumann algebra with all atoms having the same trace) acting on a separable Hilbert space $\mathscr{H}$. Let $E(\mathscr{M},\tau)$ be a separable symmetric space of $\tau$-measurable operators, whose norm is not proportional to the Hilbert norm $\|\cdot\|_2$ on $L_2(\mathscr{M},\tau)$. We provide a description of all bounded Hermitian operators on $E(\mathscr{M},\tau)$ and all surjective linear isometries of this space.
Keywords:
surjective isometries, Hermitian operators, semifinite von Neumann algebra, symmetric spaces.
Citation:
F. A. Sukochev, Jinghao Huang, “Isometries on noncommutative symmetric spaces”, Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 64–67; Dokl. Math., 103:1 (2021), 54–56
Linking options:
https://www.mathnet.ru/eng/danma156 https://www.mathnet.ru/eng/danma/v496/p64
|
Statistics & downloads: |
Abstract page: | 110 | Full-text PDF : | 42 | References: | 15 |
|